Advertisement

Graphical dynamical systems and their applications to bio-social systems

  • Abhijin Adiga
  • Chris J. Kuhlman
  • Madhav V. MaratheEmail author
  • Henning S. Mortveit
  • S. S. Ravi
  • Anil Vullikanti
Article
  • 111 Downloads

Abstract

In this review paper, we discuss graphical dynamical systems (GDSs) and their applications to biological and social systems (bio-social systems). Traditionally, differential equation-based models have been central in modeling bio-social systems. GDSs provide an alternate modeling framework. This framework explicitly represents individual components of the system and captures the interactions among them via a network. The purpose of this review is to enable modelers to obtain an understanding of this basic mathematical and computational framework so that it can be used to study specific bio-social applications. The work covers the range from computational theory to simulation-based analysis. We also provide some directions for future work.

Keywords

Graphical dynamical systems Mathematical modeling Simulation science Complexity theory Biological and social systems 

Notes

Acknowledgements

We thank members of the Network Dynamics and Simulation Science Laboratory (NDSSL) for their comments and input. Specifically, we thank Chris Barrett, Christian Reidys, Daniel Rosenkrantz and Richard Stearns for their collaboration on several papers discussed in this article. We thank the computer systems administrators and managers at the Biocomplexity Institute of Virginia Tech for their help in this and many other works: Dominik Borkowski, William Miles Gentry, Jeremy Johnson, William Marmagas, Douglas McMaster, Kevin Shinpaugh and Robert Wills. This work has been partially supported by DTRA CNIMS (Contract HDTRA1-11-D-0016-0001), NSF BIG DATA Grant IIS-1633028, NSF DIBBS Grant ACI-1443054 and NSF EAGER Grant CMMI-1745207. The US Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright annotation thereon.

Disclaimer

The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the US Government.

References

  1. 1.
    Epstein, J.M.: Generative Social Science: Studies in Agent-Based Computational Modeling. Princeton University Press, Princeton (2007)Google Scholar
  2. 2.
    Barrett, C., Bisset, K., Eubank, S., Marathe, M., Kumar, V., Mortveit, H.: Modeling and simulation of large biological, information and socio-technical systems: an interaction based approach. In: Laubenbacher, R. (ed.) Modeling and Simulation of Biological Networks, pp. 101–147. American Mathematical Society (2007)Google Scholar
  3. 3.
    Barrett, C., Eubank, S., Marathe, M.: Modeling and simulation of large biological, information and socio-technical systems: an interaction based approach. In: Goldin, D., Smolka, S.A., Wegner, P. (eds.) Interactive Computation, pp. 353–392. Springer, Berlin (2006)Google Scholar
  4. 4.
    Kuhlman, C.J., Kumar, V.A., Marathe, M.V., Mortveit, H.S., Swarup, S., Tuli, G., Ravi, S., Rosenkrantz, D.J.: A general-purpose graph dynamical system modeling framework. In: Simulation Conference (WSC), Proceedings of the 2011 Winter, pp. 296–308. IEEE (2011)Google Scholar
  5. 5.
    Barrett, C., Beckman, R., Berkbigler, K., Bisset, K., Bush, B., Campbell, K., Eubank, S., Henson, K., Hurford, J., Kubicek, D., Marathe, M., Romero, P., Smith, J., Smith, L., Speckman, P., Stretz, P., Thayer, G., Eeckhout, E., Williams, M.: TRANSIMS: transportation analysis simulation system. Technical Report LA-UR-00-1725, LANL (2001)Google Scholar
  6. 6.
    Eubank, S.: Scalable, efficient epidemiological simulation. In: Proceedings of Symposium on Applied Computing, pp. 139–145 (2002)Google Scholar
  7. 7.
    Eubank, S., Guclu, H., Kumar, V.S.A., Marathe, M., Srinivasan, A., Toroczkai, Z., Wang, N.: Modelling disease outbreaks in realistic urban social networks. Nature 429, 180–184 (2004)Google Scholar
  8. 8.
    Bisset, K.R., Chen, J., Deodhar, S., Feng, X., Ma, Y., Marathe, M.V.: Indemics: an interactive high-performance computing framework for data intensive epidemic modeling. ACM Trans. Model. Comput. Simul. (TOMACS) 24(1), 4:1–4:32 (2014). (Special Issue on Simulation in Complex Service Systems) MathSciNetzbMATHGoogle Scholar
  9. 9.
    Barrett, C.L., Bisset, K.R., Eubank, S.G., Feng, X., Marathe, M.V.: Episimdemics: an efficient algorithm for simulating the spread of infectious disease over large realistic social networks. In: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, pp. 37:1–37:12 (2008)Google Scholar
  10. 10.
    Parikh, N., Swarup, S., Stretz, P.E., Rivers, C.M., Lewis, B.L., Marathe, M.V., Eubank, S.G., Barrett, C.L., Lum, K., Chungbaek, Y.: Modeling human behavior in the aftermath of a hypothetical improvised nuclear detonation. In: Proceedings of the International Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 949–956. Saint Paul, MN, USA (2013)Google Scholar
  11. 11.
    Barrett, C., Bisset, K., Chandan, S., Chen, J., Chungbaek, Y., Eubank, S., Evrenosoğlu, Y., Lewis, B., Lum, K., Marathe, A., Marathe, M., Mortveit, H., Parikh, N., Phadke, A., Reed, J., Rivers, C., Saha, S., Stretz, P., Swarup, S., Thorp, J., Vullikanti, A., Xie, D.: Planning and response in the aftermath of a large crisis: an agent-based informatics framework. In: Pasupathy, R., Kim, S.H., Tolk, A., Hill, R., Kuhl, M.E. (eds.) Proceedings of the 2013 Winter Simulation Conference, pp. 1515–1526 (2013)Google Scholar
  12. 12.
    Bisset, K., Alam, M., Bassaganya-Riera, J., Carbo, A., Eubank, S., Hontecillas, R., Hoops, S., Mei, Y., Wendelsdorf, K., Xie, D., Yeom, J., Marathe, M.: High-performance interaction-based simulation of gut immunopathologies with enteric immunity simulator (ENISI). In: Proceedings of International Parallel and Distributed Processing Symposium (IPDPS), pp. 48–59 (2012)Google Scholar
  13. 13.
    Alam, M., Deng, X., Philipson, C., Bassaganya-Riera, J., Bisset, K., Carbo, A., Eubank, S., Hontecillas, R., Hoops, S., Mei, Y., Abedi, V., Marathe, M.: Sensitivity analysis of an ENteric Immunity SImulator (ENISI)-based model of immune responses to Helicobacter pylori infection. PLoS ONE 10(9), e0136139 (2015)Google Scholar
  14. 14.
    Barrett, C., Eubank, S., Kumar, V.S.A., Marathe, M.: Understanding large-scale social and infrastructure networks: a simulation-based approach. SIAM News 37(4), 1–5 (2004)Google Scholar
  15. 15.
    Yeom, J.S., Bhatele, A., Bisset, K.R., Bohm, E., Gupta, A., Kale, L.V., Marathe, M., Nikolopoulos, D.S., Schulz, M., Wesolowski, L.: Overcoming the scalability challenges of epidemic simulations on Blue Waters. In: Proceedings of the IEEE 28th International Parallel and Distributed Processing Symposium, pp. 755–764 (2014)Google Scholar
  16. 16.
    von Neumann, J.: Theory of Self-Reproducing Automata. University of Illinois Press, Champaign (1966). (Edited and completed by Arthur W. Burks) Google Scholar
  17. 17.
    Kari, J.: Theory of cellular automata: a survey. Theor. Comput. Sci. 334, 3–33 (2005)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Ilachinski, A.: Cellular Automata: A Discrete Universe. World Scientific Publishing Company, Cambridge (2001)zbMATHGoogle Scholar
  19. 19.
    Delorme, M., Mazoyer, J. (eds.): Cellular Automata—A Parallel Model, Mathematics and Its Applications, vol. 460. Kluwer Academic Publishers, Alphen aan den Rijn (1999)Google Scholar
  20. 20.
    Wolfram, S.: Theory and Applications of Cellular Automata, Advanced Series on Complex Systems, vol. 1. World Scientific Publishing Company, Singapore (1986)Google Scholar
  21. 21.
    Kauffman, S.: Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22(3), 437–467 (1969)MathSciNetGoogle Scholar
  22. 22.
    Ribeiro, A.S., Kauffman, S.A.: Noisy attractors and ergodic sets in models of gene regulatory networks. J. Theor. Biol. 247(4), 743–755 (2007)MathSciNetGoogle Scholar
  23. 23.
    Goles, E., Martinez, S.: Neural and Automata Networks: Dynamical Behaviour and Applications. Kluwer Academic Publishers, Alphen aan den Rijn (1990)zbMATHGoogle Scholar
  24. 24.
    Goles-Chacc, E., Fogelman-Soulie, F., Pellegrin, D.: Decreasing energy functions as a tool for studying threshold networks. Discrete Appl. Math. 12, 261–277 (1985)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Goles, E., Olivos, J.: Periodic behavior in generalized threshold functions. Discrete Math. 30, 187–189 (1980)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Ruz, G.A., Goles, E.: Reconstruction and update robustness of the mammalian cell cycle network. In: Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 397–403 (2012)Google Scholar
  27. 27.
    Gershenson, C.: Introduction to random Boolean networks (2004). arXiv:nlin.AO/040806v3-12Aug2004. Accessed Aug 2005
  28. 28.
    Shmulevich, I., Dougherty, E.R., Zhang, W.: From Boolean to probabilistic Boolean networks as models of genetic regulatory networks. Proc. IEEE 90(11), 1778–1792 (2002)Google Scholar
  29. 29.
    Shmulevich, I., Dougherty, E.R., Kim, S., Zhang, W.: Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics 18(2), 261–274 (2002)Google Scholar
  30. 30.
    Shmulevich, I., Kauffman, S.A.: Activities and sensitivities in Boolean network models. Phys. Rev. Lett. 93(4), 048701:1–048701:4 (2004)Google Scholar
  31. 31.
    Jarrah, A.S., Laubenbacher, R.: On the Algebraic Geometry of Polynomial Dynamical Systems, The IMA Volumes in Mathematics and Its Applications, vol. 149, pp. 109–123. Springer, New York (2009)zbMATHGoogle Scholar
  32. 32.
    Jarrah, A.S., Raposa, B., Laubenbacher, R.: Nested canalyzing, unate cascade, and polynomial functions. Physica D 233, 167–174 (2007)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Kaneko, K.: Pattern dynamics in spatiotemporal chaos. Physica D 34, 1–41 (1989)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Golubitsky, M., Pivato, M., Stewart, I.: Interior symmetry and local bifurcations in coupled cell networks. Dyn. Syst. 19(4), 389–407 (2004)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Nishikawa, T., Sun, J., Motter, A.E.: Sensitive dependence of optimal network dynamics on network structure. Phys. Rev. X 7, 041044:1–041044:21 (2017)Google Scholar
  36. 36.
    Davidich, M., Bornholdt, S.: The transition from differential equations to Boolean networks: a case study in simplifying a regulatory network model. J. Theor. Biol. 255(3), 269–277 (2008)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Veliz-Cuba, A., Stigler, B.: Boolean models can explain bistability in the lac Operon. J. Comput. Biol. 18, 783–794 (2011)MathSciNetGoogle Scholar
  38. 38.
    Barrett, C.L., Hunt III, H.B., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E.: Complexity of reachability problems for finite discrete dynamical systems. J. Comput. Syst. Sci. 72(8), 1317–1345 (2006)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Rosenkrantz, D.J., Marathe, M.V., Ravi, S.S., Stearns, R.E.: Testing phase space properties of synchronous dynamical systems with nested canalyzing local functions. In: Proceedings of 17th International Conference on Autonomous Agents and Multiagent Systems (AAMAS), Stockholm, Sweden, pp. 1585–1594 (2018)Google Scholar
  40. 40.
    Barrett, C.L., Hunt III, H.B., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E.: Reachability problems for sequential dynamical systems with threshold functions. Theor. Comput. Sci. 295(1–3), 41–64 (2003)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Mortveit, H.S., Reidys, C.M.: An Introduction to Sequential Dynamical Systems. Springer, Berlin (2007)zbMATHGoogle Scholar
  42. 42.
    Abdelhamid, S.H.E., Kuhlman, C.J., Marathe, M.V., Mortveit, H.S., Ravi, S.S.: GDSCalc: a web-based application for discrete graph dynamical systems. PLoS ONE 10(8), 24 (2015)Google Scholar
  43. 43.
    El Samad, H., Khammash, M., Petzold, L., Gillespie, D.: Stochastic modeling of gene regulatory networks. Int. J. Robust Nonlinear Control 15, 691–711 (2005)zbMATHGoogle Scholar
  44. 44.
    Eubank, S., Kumar, V.S.A., Marathe, M.V., Srinivasan, A., Wang, N.: Structure of social contact networks and their impact on epidemics. In: Abello, J.M., Cormode, G. (eds.) Discrete Methods in Epidemiology, vol. 70, pp. 179–200. American Mathematical Society, Providence, RI (2006)Google Scholar
  45. 45.
    Granovetter, M.: Threshold models of collective behavior. Am. J. Sociol. 83(6), 1420–1443 (1978)Google Scholar
  46. 46.
    Kuhlman, C.J., Kumar, V.S.A., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J.: Inhibiting diffusion of complex contagions in social networks: theoretical and experimental results. Data Min. Knowl. Discov. 29(2), 423–465 (2015)MathSciNetzbMATHGoogle Scholar
  47. 47.
    Kuhlman, C.J., Kumar, V.S.A., Marathe, M.V., Swarup, S., Tuli, G., Ravi, S.S., Rosenkrantz, D.J.: Inhibiting the diffusion of contagions in bi-threshold systems: Analytical and experimental results. In: Complex Adaptive Systems: Energy, Information, and Intelligence, Papers from the 2011 AAAI Fall Symposium, Arlington, Virginia, pp. 91–100 (2011)Google Scholar
  48. 48.
    Kuhlman, C.J.: High performance computational social science modeling of networked populations. Ph.D. thesis, Computer Science Department, Virginia Tech, Blacksburg, VA, USA (2013)Google Scholar
  49. 49.
    Kuhlman, C.J., Kumar, V.S.A., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Swarup, S., Tuli, G.: A bi-threshold model of complex contagion and its application to the spread of smoking behavior. In: Proceedings of SNA-KDD Workshop, pp. 18.1–18.10 (2011)Google Scholar
  50. 50.
    Kuhlman, C.J., Marathe, M.V., Kumar, V.S.A., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E.: Analysis problems for special classes of bi-threshold dynamical systems. In: Proceedings of Workshop on Multiagent Interaction Networks (MAIN 2013), held in conjunction with AAMAS, pp. 26–33 (2013)Google Scholar
  51. 51.
    Barrett, C.L., Hunt III, H.B., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E., Thakur, M.: Computational aspects of analyzing social network dynamics. In: IJCAI 2007, Proceedings of 20th International Joint Conference on Artificial Intelligence, Hyderabad, India, 6–12 Jan 2007, pp. 2268–2273 (2007)Google Scholar
  52. 52.
    Barrett, C.L., Hunt III, H.B., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E.: Modeling and analyzing social network dynamics using stochastic discrete graphical dynamical systems. Theor. Comput. Sci. 412(30), 3932–3946 (2011)MathSciNetzbMATHGoogle Scholar
  53. 53.
    Rosenkrantz, D.J., Marathe, M.V., Hunt III, H.B., Ravi, S.S., Stearns, R.E.: Analysis problems for graphical dynamical systems: a unified approach through graph predicates. In: Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2015, Istanbul, Turkey, 4–8 May 2015, pp. 1501–1509 (2015)Google Scholar
  54. 54.
    Barrett, C.L., Hunt III, H.B., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E., Thakur, M.: Predecessor existence problems for finite discrete dynamical systems. Theor. Comput. Sci. 386(1–2), 3–37 (2007)MathSciNetzbMATHGoogle Scholar
  55. 55.
    Barrett, C.L., Hunt III, H.B., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E.: Predecessor and permutation existence problems for sequential dynamical systems. In: DMCS, pp. 69–80 (2003)Google Scholar
  56. 56.
    Easley, D., Kleinberg, J.: Networks, Crowds and Markets: Reasoning About a Highly Connected World. Cambridge University Press, New York, NY (2010)zbMATHGoogle Scholar
  57. 57.
    Dodds, P., Watts, D.: A generalized model of social and biological contagion. J. Theor. Biol. 232(4), 587–604 (2005)MathSciNetGoogle Scholar
  58. 58.
    Centola, D., Macy, M.: Complex contagions and the weakness of long ties. Am. J. Sociol. 113(3), 702–734 (2007)Google Scholar
  59. 59.
    Kleinberg, J.: Cascading behavior in networks: algorithmic and economic issues. In: Nissan, N., Roughgarden, T., Tardos, E., Vazirani, V. (eds.) Algorithmic Game Theory, pp. 613–632. Cambridge University Press, New York, NY (2007)Google Scholar
  60. 60.
    Barrett, C.L., Hunt III, H.B., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E.: Analysis problems for sequential dynamical systems and communicating state machines. In: Proceedings of MFCS, pp. 159–172 (2001)Google Scholar
  61. 61.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-completeness. W. H. Freeman and Co., San Francisco, CA (1979)zbMATHGoogle Scholar
  62. 62.
    Barrett, C.L., Hunt III, H.B., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E.: On special classes of sequential dynamical systems. Ann. Comb. 7, 381–408 (2003)MathSciNetzbMATHGoogle Scholar
  63. 63.
    Bodlaender, H.: Treewidth: algorithmic techniques and results. In: Proceedings of 22nd Symposium on Mathematical Foundations of Computer Science, pp. 29–36 (1997)Google Scholar
  64. 64.
    Barrett, C.L., Hunt III, H.B., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E., Tosic, P.T.: Gardens of Eden and fixed points in sequential dynamical systems. In: Proceedings of International Conference on Discrete Models Combinatorics, Computation and Geometry (DM-CCG), pp. 95–110 (2001)Google Scholar
  65. 65.
    Kosub, S., Homan, C.M.: Dichotomy results for fixed point counting in Boolean dynamical systems. In: Proceedings of ICTCS, pp. 163–174 (2007)Google Scholar
  66. 66.
    Tosic, P.T.: On the complexity of enumerating possible dynamics of sparsely connected Boolean network automata with simple update rules. In: Automata 2010—16th International Workshop on CA and DCS, pp. 125–144 (2010)Google Scholar
  67. 67.
    Akutsu, T., Kosub, S., Melkman, A., Tamura, T.: Finding a periodic attractor of a Boolean network. IEEE/ACM Trans. Comput. Biol. Bioinform. 9(5), 1410–1421 (2012)Google Scholar
  68. 68.
    Kauffman, S.: The Origins of Order: Self-Organization and Selection in Evolution. Oxford University Press, New York, NY (1993)Google Scholar
  69. 69.
    Kauffman, S., Peterson, C., Samuelsson, B., Troein, C.: Random Boolean network models and the yeast transcriptional network. Proc. Natl. Acad. Sci. (PNAS) 100(25), 14796–14799 (2003)Google Scholar
  70. 70.
    Bornholdt, S.: Boolean network models of cellular regulation: prospects and limitations. J. R. Soc. Interface 5(Suppl 1), S85–S94 (2008)Google Scholar
  71. 71.
    Wang, R.S., Saadatpour, A., Albert, R.: Boolean modeling in systems biology: an overview of methodology and applications. Phys. Biol. 9(5), 055001 (2012)Google Scholar
  72. 72.
    Laschov, D., Margaliot, M., Even, G.: Observability of Boolean networks: a graph-theoretic approach. Automatica 49(8), 2351–2362 (2013)MathSciNetzbMATHGoogle Scholar
  73. 73.
    Nguyen, C., Schlesinger, K.J., Carlson, J.M.: Data-driven models for individual and group decision making. In: Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 852–859 (2017)Google Scholar
  74. 74.
    Macal, C., North, M.: Introductory tutorial: agent-based modeling and simulation. In: Proceedings of the 2014 Winter Simulation Conference, pp. 6–20 (2014)Google Scholar
  75. 75.
    Weimer, C.W., Miller, J.O., Hill, R.R.: Agent-based modeling: an introduction and primer. In: Proceedings of the 2016 Winter Simulation Conference, pp. 65–79 (2016)Google Scholar
  76. 76.
    An, G., Mi, Q., Dutta-Moscato, J., Vodovotz, Y.: Agent-based models in translational systems biology. Wiley Interdiscip. Rev. Syst. Biol. Med. 1, 159–171 (2009)Google Scholar
  77. 77.
    Nikolai, C., Madey, G.: Tools of the trade: a survey of various agent based modeling platforms. J. Artif. Soc. Soc. Simul. 12, 1–37 (2009)Google Scholar
  78. 78.
    Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 137–146 (2003)Google Scholar
  79. 79.
    Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social networks. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 199–208 (2009)Google Scholar
  80. 80.
    Nguyen, N.P., Yan, G., Thai, M.T., Eidenbenz, S.: Containment of misinformation spread in online social networks. In: Proceedings of the 4th Annual ACM Web Science Conference, pp. 213–222 (2012)Google Scholar
  81. 81.
    Kuhlman, C.J., Tuli, G., Swarup, S., Marathe, M.V., Ravi, S.S.: Blocking simple and complex contagion by edge removal. In: 2013 IEEE 13th International Conference on Data Mining, Dallas, TX, USA, 7–10 Dec 2013, pp. 399–408 (2013)Google Scholar
  82. 82.
    Demongeot, J., Goles, E., Morvan, M., Noual, M., Sene, S.: Attraction basins as gauges of robustness against boundary conditions in biological complex systems. PLoS ONE 5, e11793-1–e11793-18 (2010)Google Scholar
  83. 83.
    Wendelsdorf, K., Alam, M., Bassaganya-Riera, J., Bisset, K., Eubank, S., Hontecillas, R., Hoops, S., Marathe, M.: Enteric immunity simulator: a tool for in silico study of gastroenteric infections. IEEE Trans. NanoBiosci. 11(3), 273–288 (2012)Google Scholar
  84. 84.
    Wendelsdorf, K., Bassaganya-Riera, J., Bisset, K., Eubank, S., Hontecillas, R., Marathe, M.: Enteric immunity simulator: a tool for in silico study of gut immunopathologies. In: Proceedings of the IEEE International Conference Bioinformatics and Biomedicine, pp. 462–469 (2011)Google Scholar
  85. 85.
    Kauffman, S.: Homeostasis and differentiation in random genetic control networks. Nature 224, 177–178 (1969)Google Scholar
  86. 86.
    Thomas, R.: Boolean formalisation of genetic control circuits. J. Theor. Biol. 42(3), 563–585 (1973)Google Scholar
  87. 87.
    Goles, E., Salinas, L.: Comparison between parallel and serial dynamics of Boolean networks. Theor. Comput. Sci. 396, 247–253 (2008)MathSciNetzbMATHGoogle Scholar
  88. 88.
    Serra, R., Villani, M., Barbieri, A., Kauffman, S., Colacci, A.: On the dynamics of random Boolean networks subject to noise: attractors, ergodic sets and cell types. J. Theor. Biol. 265, 185–193 (2010)MathSciNetzbMATHGoogle Scholar
  89. 89.
    Luo, J.X., Turner, M.S.: Evolving sensitivity balances Boolean networks. PLoS ONE 7, e36010-1–e36010-8 (2012)Google Scholar
  90. 90.
    Macauley, M., Mortveit, H.S.: On enumeration of conjugacy classes of Coxeter elements. Proc. Am. Math. Soc. 136(12), 4157–4165 (2008)MathSciNetzbMATHGoogle Scholar
  91. 91.
    Macauley, M., Mortveit, H.: Cycle equivalence of graph dynamical systems. Nonlinearity 22(2), 421–436 (2009)MathSciNetzbMATHGoogle Scholar
  92. 92.
    Welsh, D.: The Tutte polynomial. Random Struct. Algorithms 15, 210–228 (1999)MathSciNetzbMATHGoogle Scholar
  93. 93.
    Gordon, S., Taylor, P.R.: Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 5(12), 953–64 (2005)Google Scholar
  94. 94.
    Iwasaki, A.: Mucosal dendritic cells. Ann. Rev. Immunol. 25, 381–418 (2007)Google Scholar
  95. 95.
    Grilo, A., Caetano, A., Rosa, A.: Agent based artificial immune system. In: Proceedings of GECCO-01, vol. LBP pp. 145–151 (2001)Google Scholar
  96. 96.
    Tay, J.C., Jhavar, A.: CAFISS: A complex adaptive framework for immune system simulation. In: Proceedings of the 2005 ACM Symposium on Applied Computing, SAC ’05, pp. 158–164. ACM, New York, NY (2005)Google Scholar
  97. 97.
    Celada, F., Seiden, P.E.: A computer model of cellular interactions in the immune system. Immunol. Today 13(2), 56–62 (1992)Google Scholar
  98. 98.
    Castiglione, F., Duca, K., Jarrah, A., Laubenbacher, R., Hochberg, D., Thorley-Lawson, D.: Simulating Epstein-Barr virus infection with C-ImmSim. Bioinformatics 23, 1371–1377 (2007)Google Scholar
  99. 99.
    Bernaschi, M., Castiglione, F.: Design and implementation of an immune system simulator. Comput. Biol. Med. 31(5), 303–31 (2001)Google Scholar
  100. 100.
    Emerson, A., Rossi, E.: Immunogrid—the virtual human immune system project. Stud. Health Technol. Inform. 126, 87–92 (2007)Google Scholar
  101. 101.
    Efroni, S., Harel, D., Cohen, I.: Reactive animation: realistic modeling of complex dynamic systems. IEEE Comput. 38(1), 38–47 (2005)Google Scholar
  102. 102.
    Swerdlin, N., Cohen, I.R., Harel, D.: The lymph node B cell immune response: dynamic analysis in-silico. Proc. IEEE 96(8), 1421–1443 (2008)Google Scholar
  103. 103.
    Mata, J., Cohn, M.: Cellular automata-based modeling program: synthetic immune system. Immunol. Rev. 216(1), 198–212 (2007)Google Scholar
  104. 104.
    Meier-Schellersheim, M., Mack, G.: SIMMUNE, a tool for simulating and analyzing immune system behavior. CoRR cs.MA/9903017 (1999)Google Scholar
  105. 105.
    Sneddon, M.W., Faeder, J.R., Emonet, T.: Efficient modeling, simulation and coarse-graining of biological complexity with NFsim. Nat. Methods 8(2), 177–83 (2011)Google Scholar
  106. 106.
    Folcik, V.A., An, G.C., Orosz, C.G.: The basic immune simulator: an agent-based model to study the interactions between innate and adaptive immunity. Theor. Biol. Med. Model. 4, 39 (2007)Google Scholar
  107. 107.
    Sutterlin, T., Huber, S., Dickhaus, H., Grabe, N.: Modeling multi-cellular behavior in epidermal tissue homeostasis via finite state machines in multi-agent systems. Bioinformatics 25(16), 2057–2063 (2009)Google Scholar
  108. 108.
    Bauer, A.L., Beauchemin, C.A.A., Perelson, A.S.: Agent-based modeling of host-pathogen systems: the successes and challenges. Inf. Sci. 179(10), 1379–1389 (2009)Google Scholar
  109. 109.
    Fachada, N., Lopes, V.V., Rosa, A.: Agent based modelling and simulation of the immune system: a review. Technical report, Systems and Robotics Institute, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal (2000)Google Scholar
  110. 110.
    Pappalardo, F., Zhang, P., Halling-Brown, M., Basford, K., Scalia, A., Shepherd, A.J., Moss, D., Motta, S., Brusic, V.: Computational simulations of the immune system for personalized medicine: state of the art and challenges. Curr. Pharmacogenom. Personal. Med. 6(4), 260–271 (2008)Google Scholar
  111. 111.
    Ferguson, N., Cummings, D., Cauchemez, S., Fraser, C., Riley, S., Meeyai, A., Iamsirithaworn, S., Burke, D.: Strategies for containing an emerging Influenza pandemic in Southeast Asia. Nature 437, 209–214 (2005)Google Scholar
  112. 112.
    Barrett, C., Bissett, K., Chen, J., Feng, X., Kumar, V.S.A., Marathe, M.: Epifast: a fast algorithm for large scale realistic epidemic simulations on distributed memory systems. In: International Conference on Supercomputing (ICS), pp. 430–439 (2009)Google Scholar
  113. 113.
    Kumar, S., Piper, K., Galloway, D.D., Hadler, J.L., Grefenstette, J.J.: Is population structure sufficient to generate area-level inequalities in influenza rates? An examination using agent-based models. BMC Public Health 15, 947 (2015)Google Scholar
  114. 114.
    Fox, S.J., Miller, J.C., Meyers, L.A.: Seasonality in risk of pandemic influenza emergence. PLoS Comput. Biol. 13(10), e1005749-1–e1005749-23 (2017)Google Scholar
  115. 115.
    Marathe, M., Vullikanti, A.: Computational epidemiology. Commun. ACM 56(7), 88–96 (2013)Google Scholar
  116. 116.
    Bhatele, A., Yeom, J.S., Jain, N., Kuhlman, C.J., Livnat, Y., Bisset, K.R., Kale, L.V., Marathe, M.V.: Massively parallel simulations of spread of infectious diseases over realistic social networks. In: Proceedings of the 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, pp. 689–694 (2017)Google Scholar
  117. 117.
    Abdelhamid, S., Kuhlman, C.J., Marathe, M.V., Ravi, S.S., Reid, K.: Agent-based modeling and simulation of depression and its impact on students’ success and academic retention. In: American Society for Engineering Education (ASEE) (2016)Google Scholar
  118. 118.
    Lum, K., Swarup, S., Eubank, S., Hawdon, J.: The contagious nature of imprisonment: an agent-based model to explain racial disparities in incarceration rates. J. R. Soc. Interface 11(98), 12 (2014)Google Scholar
  119. 119.
    Schelling, T.C.: Dynamic models of segregation. J. Math. Sociol. 1, 143–186 (1971)zbMATHGoogle Scholar
  120. 120.
    Ameden, H.A., Boxall, P.C., Cash, S.B., Vickers, D.A.: An agent-based model of border enforcement for invasive species management. Can. J. Agric. Econ. 57, 481–496 (2009)Google Scholar
  121. 121.
    Tonnang, H.E., Herve, B.D., Biber-Freudenberger, L., Salifu, D., Subramanian, S., Ngowi, V.B., Guimapi, R.Y., et al.: Advances in crop insect modelling method—towards a whole system approach. Ecol. Model. 354, 88–103 (2017)Google Scholar
  122. 122.
    Merkey, B.V., Lardon, L.A., Seoane, J.M., Kreft, J.U., Smets, B.F.: Growth dependence of conjugation explains limited plasmid invasion in biofilms: an individual-based modelling study. Environ. Microbiol. 13, 2435–2452 (2011)Google Scholar
  123. 123.
    Spies, T.A., White, E., Ager, A., Kline, J.D., Bolte, J.P., Platt, E.K., Olsen, K.A., et al.: Using an agent-based model to examine forest management outcomes in a fire-prone landscape in Oregon, USA. Ecol. Soc. 22, 20 (2017)Google Scholar
  124. 124.
    Thorne, B.C., Bailey, A.M., Peirce, S.M.: Combining experiments with multi-cell agent-based modeling to study biological tissue patterning. Brief. Bioinform. 8(4), 245–257 (2007)Google Scholar
  125. 125.
    Channakeshava, K., Bisset, K., Kumar, V.A., Marathe, M., Yardi, S.: High performance scalable and expressive modeling environment to study mobile malware in large dynamic networks. In: 25th IEEE International Parallel & Distributed Processing Symposium (IPDPS), pp. 770–781 (2011)Google Scholar
  126. 126.
    Bookstaber, R.: Using agent-based models for analyzing threats to financial stability. Technical Report Working Paper No. 0003, U.S. Dept. of Treasury (2012)Google Scholar
  127. 127.
    Paul, M., Dredze, M.: A model for mining public health topics from Twitter. Health 11, 16–6 (2012)Google Scholar
  128. 128.
    Zhang, B., Chan, W.K.V., Ukkusuri, S.V.: Agent-based modeling for household level hurricane evacuation. In: Proceedings of the 2009 Winter Simulation Conference, pp. 2778–2784 (2009)Google Scholar
  129. 129.
    Grimm, V.: Ten years of individual-based modelling in ecology: what have we learned and what could we learn in the future? Ecol. Model. 115, 129–148 (1999)Google Scholar
  130. 130.
    Zhu, Y., Xie, K., Ozbay, K., Yang, H.: Hurricane evacuation modeling using behavior models and scenario-driven agent-based simulations. Procedia Comput. Sci. 130, 836–843 (2018)Google Scholar
  131. 131.
    Shmulevich, I., Lähdesmäki, H., Dougherty, E.R., Astola, J., Zhang, W.: The role of certain post classes in Boolean network models of genetic networks. Proc. Natl. Acad. Sci. 100(19), 10734–10739 (2003)Google Scholar
  132. 132.
    Heckbert, S., Baynes, T., Reeson, A.: Agent-based modeling in ecological economics. Ann. N. Y. Acad. Sci. 1185, 39–53 (2010)Google Scholar
  133. 133.
    Squazzoni, F.: The impact of agent-based models in the social sciences after 15 years of incursions. Hist. Econ. Ideas 18, 197–233 (2010)Google Scholar
  134. 134.
    Bruch, E., Atwell, J.: Agent-based models in empirical social research. Sociol. Methods Res. 44, 186–221 (2013)MathSciNetGoogle Scholar
  135. 135.
    Bianchi, F., Squazzoni, F.: Agent-based models in sociology. WIREs Comput. Stat. 7, 284–306 (2015)MathSciNetGoogle Scholar
  136. 136.
    Axelrod, R.: The dissemination of culture. J. Confl. Resolut. 41, 203–226 (1997)Google Scholar
  137. 137.
    Epstein, J.M.: Modeling civil violence: an agent-based computational approach. Proc. Natl. Acad. Sci. (PNAS) 99, 7243–7250 (2002)Google Scholar
  138. 138.
    Hethcote, H.: The mathematics of infectious diseases. SIAM Rev. 42(4), 599–653 (2000)MathSciNetzbMATHGoogle Scholar
  139. 139.
    Newman, M.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003)MathSciNetzbMATHGoogle Scholar
  140. 140.
    Longini, I.M., Nizam, A., Xu, S., Ungchusak, K., Hanshaoworakul, W., Cummings, D.A., Halloran, E.M.: Containing pandemic influenza at the source. Science 309(5737), 1083–1087 (2005)Google Scholar
  141. 141.
    Sander, B., Nizam, A., Garrison, L.P., Postma, M.J., Halloran, M.E., Ira, M., Longini, J.: Economic evaluation of influenza pandemic mitigation strategies in the United States using a stochastic microsimulation transmission model. Value Health 12, 226–233 (2009)Google Scholar
  142. 142.
    Yang, Y., Sugimoto, J., Halloran, M., Basta, N., Chao, D., Matrajt, L., Potter, G., Kenah, E., Longini, I.M.: The transmissibility and control of pandemic influenza a (H1N1) virus. Science 326(5953), 729–733 (2009)Google Scholar
  143. 143.
    Halloran, M., Ferguson, N., Eubank, S., Longini, I., Cummings, D., Lewis, B., Xu, S., Fraser, C., Vullikanti, A., Germann, T., Wagener, D., Beckman, R., Kadau, K., Barrett, C., Macken, C., Burke, D., Cooley, P.: Modeling targeted layered containment of an influenza pandemic in the United States. Proc. Natl. Acad. Sci. (PNAS) 105(12), 4639–4644 (2008)Google Scholar
  144. 144.
    Pandey, A., Atkins, K.E., Medlock, J., Wenzel, N., Townsend, J.P., Childs, J.E., Nyenswah, T.G., Ndeffo-Mbah, M.L., Galvani, A.P.: Strategies for containing Ebola in West Africa. Science 346(6212), 991–995 (2014)Google Scholar
  145. 145.
    Rivers, C., Lofgren, E., Marathe, M., Eubank, S., Lewis, B.: Modeling the impact of interventions on an epidemic of Ebola in Sierra Leone and Liberia. PLoS Curr. (2014).  https://doi.org/10.1371/currents.outbreaks.4d41fe5d6c05e9df30ddce33c66d084c
  146. 146.
    Venkatramanan, S., Chen, J., Gupta, S., Lewis, B.L., Marathe, M., Mortveit, H.S., Vullikanti, A.: Spatio-temporal optimization of seasonal vaccination using a metapopulation model of Influenza. In: 2017 IEEE International Conference on Healthcare Informatics, ICHI, pp. 134–143 (2017)Google Scholar
  147. 147.
    Ji, Z., Yan, K., Li, W., Hu, H., Zhu, X.: Mathematical and computational modeling in complex biological systems. Hindawi BioMed Res. Int. 2017, 1–16 (2017)Google Scholar
  148. 148.
    Walpole, J., Papin, J.A., Peirce, S.M.: Mathematical and computational modeling in complex biological systems. Ann. Rev. Biomed. Eng. 15, 137–154 (2013)Google Scholar
  149. 149.
    Bauch, C., Earn, D.: Vaccination and the theory of games. Proc. Natl. Acad. Sci. (PNAS) 101(36), 13391–13394 (2004)MathSciNetzbMATHGoogle Scholar
  150. 150.
    Aspnes, J., Rustagi, N., Saia, J.: Worm versus alert: who wins in a battle for control of a large-scale network? In: Proceedings of Principles of Distributed Systems, 11th International Conference, OPODIS 2007, pp. 443–456 (2007)Google Scholar
  151. 151.
    Narahari, Y.: Game Theory and Mechanism Design, IISc Lecture Notes, vol. 4. World Scientific, Singapore (2014)Google Scholar
  152. 152.
    Papadimitriou, C.H.: Computational Complexity. Pearson Publishing, Reading, MA (1993)zbMATHGoogle Scholar
  153. 153.
    Adiga, A., Chu, S., Eubank, S., Kuhlman, C.J., Lewis, B., Marathe, A., Marathe, M., Nordberg, E.K., Swarup, S., Vullikanti, A., Wilson, M.L.: Disparities in spread and control of Influenza in slums of Delhi: findings from an agent-based modelling study. BMJ Open 8(1), 12 (2018)Google Scholar
  154. 154.
    Domingos, P., Richardson, M.: Mining the network value of customers. In: KDD ’01: Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 57–66 (2001)Google Scholar
  155. 155.
    Domingos, P., Richardson, M.: Mining knowledge-sharing sites for viral marketing. In: Proceedings of the 8th International Conference on Knowledge Discovery and Data Mining, pp. 61–70 (2002)Google Scholar
  156. 156.
    Kitsak, M., Gallos, L., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H., Makse, H.: Identifying influential spreaders in complex networks. Nat. Phys. 6, 888–893 (2010)Google Scholar
  157. 157.
    Halloran, H., Longini Jr., I., Nizam, A., Yang, Y.: Possible containment of bio-terrorist smallpox. Science 298, 1428–1432 (2002)Google Scholar
  158. 158.
    Barrett, C., Chen, J., Eubank, S., Kumar, V., Lewis, B., Marathe, A., Marathe, M.: Role of vulnerable and critical nodes in controlling epidemics in social networks. In: Proceedings of Epidemics (2008)Google Scholar
  159. 159.
    Barrett, C., Bisset, K., Leidig, J., Marathe, A., Marathe, M.: Economic and social impact of influenza mitigation strategies by demographic class. Epidemics 3(1), 19–31 (2011)Google Scholar
  160. 160.
    Adiga, A., Kuhlman, C., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E.: Inferring local transition functions of discrete dynamical systems from observations of system behavior. Theor. Comput. Sci. 679, 126–144 (2017)MathSciNetzbMATHGoogle Scholar

Copyright information

© Indian Institute of Technology Madras 2018

Authors and Affiliations

  • Abhijin Adiga
    • 1
  • Chris J. Kuhlman
    • 1
  • Madhav V. Marathe
    • 1
    • 2
    Email author
  • Henning S. Mortveit
    • 1
  • S. S. Ravi
    • 1
    • 3
  • Anil Vullikanti
    • 1
    • 2
  1. 1.Biocomplexity Institute and InitiativeUniversity of VirginiaCharlottesvilleUSA
  2. 2.Computer Science DepartmentUniversity of VirginiaCharlottesvilleUSA
  3. 3.University at Albany – State University of New YorkAlbanyUSA

Personalised recommendations