Skip to main content
Log in

Intrusive methods in uncertainty quantification and their connection to kinetic theory

  • Published:
International Journal of Advances in Engineering Sciences and Applied Mathematics Aims and scope Submit manuscript

Abstract

Uncertainty quantification for hyperbolic equations is a challenging task, since solutions exhibit discontinuities and sharp gradients. The commonly used stochastic-Galerkin (SG) Method uses polynomials to represent the solution, leading to oscillatory approximations due to Gibbs phenomenon. Additionally, the SG moment systems can loose hyperbolicity. The intrusive polynomial moment method (IPMM) yields a general framework for intrusive methods while ensuring hyperbolicity of the moment system and restricting oscillatory over- and undershoots to specified bounds. In this contribution, similarities as well as differences of the IPMM to minimal entropy closures used in transport theory will be discussed. We apply filters, which are well-known in kinetic theory to the SG Method to limit oscillatory overshoots. By investigating Burgers’ equation, we demonstrate that the use of filters improves the results of stochastic Galerkin. The IPMM method shows better approximation results than the filter, but comes at a higher computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. This stopping criterion is a stronger version of the criterion in [28].

References

  1. Ghanem, R.G., Spanos, P.D.: Stochastic Finite Elements: A Spectral Approach. Courier Corporation, Chelmsford (2003)

    MATH  Google Scholar 

  2. Wiener, N.: The homogeneous chaos. Am. J. Math. 60(4), 897–936 (1938)

    Article  MathSciNet  MATH  Google Scholar 

  3. Després, B., Poëtte, G., Lucor, D.: Robust uncertainty propagation in systems of conservation laws with the entropy closure method. In: Uncertainty Quantification in Computational Fluid Dynamics, pp. 105–149. Springer (2013)

  4. Xiu, D., Karniadakis, G.E.: Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos. Comput. Methods Appl. Mech. Eng. 191(43), 4927–4948 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gottlieb, D., Xiu, D.: Galerkin method for wave equations with uncertain coefficients. Commun. Comput. Phys. 3(2), 505–518 (2008)

    MathSciNet  MATH  Google Scholar 

  6. Poëtte, G., Després, B., Lucor, D.: Uncertainty quantification for systems of conservation laws. J. Comput. Phys. 228(7), 2443–2467 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kusch, J., Alldredge, G.W., Frank, M.: Maximum-principle-satisfying second-order intrusive polynomial moment scheme. arXiv preprint arXiv:1712.06966 (2017)

  8. Poëtte, G., Després, B., Lucor, D.: Treatment of uncertain material interfaces in compressible flows. Comput. Methods Appl. Mech. Eng. 200(1), 284–308 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Schlachter, L., Schneider, F.: A hyperbolicity-preserving stochastic galerkin approximation for uncertain hyperbolic systems of equations. arXiv preprint arXiv:1710.03587 (2017)

  10. Boltzmann, L.: Weitere studien über das wärmegleichgewicht unter gasmolekülen. In: Kinetische Theorie II, pp. 115–225. Springer (1970)

  11. Frank, M., Dubroca, B., Klar, A.: Partial moment entropy approximation to radiative heat transfer. J. Comput. Phys. 218(1), 1–18 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Frank, M., Hensel, H., Klar, A.: A fast and accurate moment method for the Fokker–Planck equation and applications to electron radiotherapy. SIAM J. Appl. Math. 67(2), 582–603 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases. Cambridge University Press, Cambridge (1970)

    MATH  Google Scholar 

  14. Case, K.M., Zweifel, P.F.: Linear Transport Theory. Addison-Wesley Pub. Co., Boston (1967)

    MATH  Google Scholar 

  15. Chandrasekhar, S.: Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15(1), 1 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lewis, E.E., Miller, W.F.: Computational Methods of Neutron Transport. Wiley, New York (1984)

    MATH  Google Scholar 

  17. Pomraning, G.C.: The Equations of Radiation Hydrodynamics. Courier Corporation, Chelmsford (1973)

    Google Scholar 

  18. Dubroca, B., Klar, A.: Half-moment closure for radiative transfer equations. J. Comput. Phys. 180(2), 584–596 (2002)

    Article  MATH  Google Scholar 

  19. Hauck, C., McClarren, R.: Positive p_n closures. SIAM J. Sci. Comput. 32(5), 2603–2626 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hauck, C.D.: High-order entropy-based closures for linear transport in slab geometry. Commun. Math. Sci 9(1), 187–205 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Levermore, C.D.: Moment closure hierarchies for kinetic theories. J. Stat. Phys. 83(5–6), 1021–1065 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. McClarren, R.G., Hauck, C.D.: Robust and accurate filtered spherical harmonics expansions for radiative transfer. J. Comput. Phys. 229(16), 5597–5614 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. McClarren, R.G., Hauck, C.D.: Simulating radiative transfer with filtered spherical harmonics. Phys. Lett. A 374(22), 2290–2296 (2010)

    Article  MATH  Google Scholar 

  24. Kružkov, S.N.: First order quasilinear equations in several independent variables. Math. USSR Sb. 10(2), 217 (1970)

    Article  Google Scholar 

  25. Struchtrup, H., Torrilhon, M.: Regularization of grads 13 moment equations: derivation and linear analysis. Phys. Fluids 15(9), 2668–2680 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hesthaven, J.S., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time-Dependent Problems, vol. 21. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  27. Alldredge, G., Schneider, F.: A realizability-preserving discontinuous galerkin scheme for entropy-based moment closures for linear kinetic equations in one space dimension. J. Comput. Phys. 295, 665–684 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Alldredge, G.W., Hauck, C.D., Tits, A.L.: High-order entropy-based closures for linear transport in slab geometry ii: a computational study of the optimization problem. SIAM J. Sci. Comput. 34(4), B361–B391 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Borwein, J.M., Lewis, A.S.: Convergence of best entropy estimates. SIAM J. Optim. 1(2), 191–205 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  30. Laiu, M.P., Hauck, C.D., McClarren, R.G., O’Leary, D.P., Tits, A.L.: Positive filtered p _n moment closures for linear kinetic equations. SIAM J. Numer. Anal. 54(6), 3214–3238 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Garrett, C.K., Hauck, C., Hill, J.: Optimization and large scale computation of an entropy-based moment closure. J. Comput. Phys. 302, 573–590 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank Graham Kaland for his helpful suggestions and enriching discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Kusch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kusch, J., Frank, M. Intrusive methods in uncertainty quantification and their connection to kinetic theory. Int J Adv Eng Sci Appl Math 10, 54–69 (2018). https://doi.org/10.1007/s12572-018-0211-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-018-0211-3

Keywords

Navigation