Skip to main content
Log in

Multivariate techniques for preprocessing noisy data for source separation using ICA

  • Published:
International Journal of Advances in Engineering Sciences and Applied Mathematics Aims and scope Submit manuscript

Abstract

Independent component analysis (ICA) is a popular technique for separating sources from observed linear mixtures of the sources. If the measured signals are corrupted by noise, then they are generally preprocessed before applying ICA. We make use of a recently developed technique known as the iterative principal component analysis (IPCA) to preprocess the noisy signals and estimate the signal subspace prior to application of ICA. This preprocessing technique is consistent with the assumptions made in ICA, is invariant to any scaling of the data, and accounts for heteroscedastic errors. Through a simulated example, we show that if the measured signals are contaminated with a high-level of additive noise and outliers, the use of the proposed preprocessing technique results in more precise extraction of the independent sources as compared to the use of PCA as a preprocessing method. Application of the technique to an experimental chemometric data set shows that pure species spectra are more accurately extracted from mixture spectra using ICA, if the data is preprocessed using IPCA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jutten, C., Herault, J.: Separation of sources-part I. Signal Process. 24, 1–10 (1991)

    Article  MATH  Google Scholar 

  2. Vigário, R., Särelä, J., Jousmäki, V., Hämäläinen, M., Oja, E.: Independent component approach to the analysis of EEG and MEG recordings. IEEE Trans. Biomed. Eng. 47, 589–593 (2000)

    Article  Google Scholar 

  3. Chen, J., Wang, X.Z.: A new approach to near-infrared spectral data analysis. J. Chem. Inf. Comput. Sci. 41, 992–1001 (2001)

    Article  Google Scholar 

  4. Cichocki, A., Amari, S.: Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications. Wiley, Chichester (2002)

    Book  Google Scholar 

  5. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. Advances in neural information processing (13), MIT press, Cambridge (2001)

  6. Comon, P.: Independent component analysis, a new concept? Signal Process. 36, 287–314 (1994)

    Article  MATH  Google Scholar 

  7. Hyvärinen, A.: A survey on independent component analysis. Neural Comput Surv 2, 294–328 (1999)

    Google Scholar 

  8. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley, Chichester (2001)

    Book  Google Scholar 

  9. Hyvärinen, A.: Gaussian moments for noisy independent component analysis. IEEE Signal Process. Lett. 6, 145–147 (1999)

    Article  Google Scholar 

  10. Hyvärinen, A.: Independent component analysis in the presence of Gaussian noise by maximum joint likelihood. Neurocomputing 22, 49–67 (1998)

    Article  MATH  Google Scholar 

  11. Joho, M., Mattias, H., Lambert, R.H.: Overdetermined blind source separation using more sensors than source signals in a noisy mixture, pp. 81–86. Proceedings of ICA, Helsinki (2000)

  12. Mathis, H., Joho, M.: Blind signal separation in noisy environments using a three step quantizer. Neurocomputing 49, 61–78 (2002)

    Article  MATH  Google Scholar 

  13. Cichocki, A., Douglas, S.C., Amari, S.: Robust techniques for independent component analysis (ICA) with noisy data. Neurocomputing 22, 113–129 (1998)

    Article  MATH  Google Scholar 

  14. Vorobyov, S., Cichocki, A.: Blind noise reduction for multisensory signals using ICA and subspace filtering with applications to EEG analysis. Biol. Cybern. 86, 293–303 (2002)

    Article  MATH  Google Scholar 

  15. Attias, H.: Independent factor analysis. Neural Comput. 11, 803–851 (1999)

    Article  Google Scholar 

  16. Ikeda, S., Toyoma, K.: Independent component analysis for noisy data: MEG data analysis. Neural Netw. 13, 1063–1074 (2000)

    Article  Google Scholar 

  17. Narasimhan, S., Shah, S.L.: Model identification and error covariance matrix estimation from noisy data using PCA. Control Eng. Pract. 16, 146–155 (2008)

    Article  Google Scholar 

  18. Fuller, W.A.: Measurement Error Models. Wiley, Chichester (1979)

    Google Scholar 

  19. Chan, N.N., Mak, T.F.: Estimating of linear functional relationships. Biometrika 70, 263–267 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  20. Davies, M.: Identifiability issues in noisy ICA. IEEE Signal Process. Lett. 11, 470–473 (2004)

    Article  Google Scholar 

  21. Gävert, H., Hurri, J., Särelä, J., Hyvärinen, A.: The FastICA Matlab Package, http://research.ics.tkk.fi/ica/fastica (2005)

  22. Cichocki, A., Amari, S., Siwek, K., Tanaka, T. Phan, A. H. et al.: ICALAB Toolboxes, http://www.bsp.riken.jp/ICALAB (2007)

  23. Lv, Q., Zhang, X.D.: A unified method for blind separation of sparse sources with unknown source number. IEEE Signal Process. Lett. 13, 49–51 (2006)

    Article  Google Scholar 

  24. Wentzell, P.D., Andrews, D.T.: Maximum likelihood multivariate calibration. Anal. Chem. 69, 2299–2311 (1997)

    Article  Google Scholar 

  25. Bhatt, N.P., Mitna, A., Narasimhan, S.: Multivariate calibration of non-replicated measurements for heteroscedastic errors. Chemom. Intell. Lab. Syst. 85, 70–81 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shankar Narasimhan.

Appendix: The IPCA algorithm

Appendix: The IPCA algorithm

The algorithm for estimating the source subspace using IPCA is given below. We use [U,S,V] = svd(X,m) to denote the truncated singular value decomposition of a m × N data matrix X, where U is the m × m matrix of left singular vectors corresponding to the non-zero singular values, S is a m × m diagonal matrix containing the non-zero singular values ordered from the largest to the smallest along the diagonal, and V is a m × N matrix of right singular vectors.

  • Step 1. Set iteration counter k = 1 and λ 0 to be zero.

  • Step 2. Set estimates of the non-zero elements of \( \Upsigma_{\varepsilon }^{k} \) to be a small fraction (say 0.0001) of the corresponding elements of S x .

  • Step 3. Obtain the transformed matrix X s  = L 1 X where LL T = \( \Upsigma_{\varepsilon }^{k} \) .

  • Step 4. Let [U,S,V] = svd(X s ,m). Obtain estimate, \( M^{k} = U_{n + 1 \ldots \ldots m}^{T} L, \) where \( U_{n + 1 \ldots \ldots m} \) is the sub-matrix of U corresponding last mn columns.

  • Step 5. Let λ k be the sum of the last mn singular values. Stop if relative change in λ is less than the specified tolerance; else continue.

  • Step 6. Obtain the solution for the non-zero elements of the error covariance matrix by solving the optimization problem given by (14). Denote the solution as \( \Upsigma_{\varepsilon }^{k + 1} \).

  • Step 7. Increment iteration counter k and return to step 3.

It is to be noted that in order to apply above algorithm, an initial guess of the number of sources has to be specified. In order to determine the actual number of sources, we can iteratively apply above algorithm for different guesses of the number of sources as described in the text and check whether the converged singular values satisfy the required theoretical condition.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramesh Babu, P., Narasimhan, S. Multivariate techniques for preprocessing noisy data for source separation using ICA. Int J Adv Eng Sci Appl Math 4, 32–40 (2012). https://doi.org/10.1007/s12572-012-0065-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-012-0065-z

Keywords

Navigation