Skip to main content

Advertisement

Log in

Three-dimensional ultrastructural imaging and quantitative analysis of the periodontal ligament

  • Review Article
  • Published:
Anatomical Science International Aims and scope Submit manuscript

Abstract

The periodontal ligament (PDL) is a unique connective tissue mainly comprising collagen fiber bundles and cells between the roots of teeth and inner walls of the alveolar-bone socket. PDL fiber bundles are arrayed between teeth and bone, with both ends embedded in the cementum or alveolar bone as Sharpey’s fiber. These bundles, synthesized by PDL fibroblasts (PDLFs), form several distinct groups within the PDL which has important functions besides tooth anchoring including tooth nutrition, proprioception, sensory detection, homoeostasis, and repair of damaged tissue. However, little is known about how the regular-PDL fiber bundle arrays are formed, maintained, and remodeled over large distances from cementum to alveolar bone. Recently, novel instruments and 3D-imaging methods have been developed that have been applied to the investigation of hard tissues including the PDL. Work from our laboratory has revealed the three-dimensional (3D) ultrastructure of PDLFs and PDL collagen bundles by focused ion beam/scanning electron microscope tomography. We have shown that PDLFs have a flat shape with long processes or a wing-like shape, while PDL bundles are a multiple-branched structure wrapped in thin sheets of PDLF cytoplasm. Furthermore, PDLFs form an extensive cellular network between the cementum and alveolar bone. The PDL cellular network is presumed to synchronize PDL fiber bundles and regulate arrays of PDL fiber bundles via gap junctions. In this review, we summarize and discuss our current 3D-histomorphometric studies of the PDL at the mesoscale level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

reproduced with permission from Hirashima et al (2016); panel b is reproduced with permission from Hirashima et al. (2018). Scale bars = 5 μm (a, c), 2 μm (b)

Fig. 5

Reproduced with permission from Hirashima et al. (2016)/CC BY 4.0. Scale bars = 10 μm

Fig. 6

Reproduced with permission from Hirashima et al. (2016)/CC BY 4.0. Scale bars = 10 μm

Fig. 7

Reproduced with permission from Hirashima et al.  (2016)/CC BY 4.0. Scale bars = 10 μm

Fig. 8

reproduced with permission from Hirashima et al. (2016)/CC BY 4.0. Scale bar = 5 μm

Fig. 9

Reproduced with permission from Hirashima et al. (2016)/CC BY 4.0.

Fig. 10

Reproduced with permission from Hirashima et al. (2018). Scale bars = 10 μm (a, b), 20 μm (c)

Fig. 11

Reproduced with permission from Hirashima et al. (2018)

Similar content being viewed by others

References

  • Acar M, Kocherlakota KS, Murphy MM, Peyer JG, Oguro H, Inra CN, Jaiyeola C, Zhao Z, Luby-Phelps K, Morrison SJ (2015) Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal. Nature 526:126–130

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beertsen W, Mcculloch CA, Sodek J (1997) The periodontal ligament: a unique, multifunctional connective tissue. Periodontol 2000 13:20–40

    CAS  PubMed  Google Scholar 

  • Bergomi M, Cugnoni J, Wiskott HW, Schneider P, Stampanoni M, Botsis J, Belser UC (2010) Three-dimensional morphometry of strained bovine periodontal ligament using synchrotron radiation-based tomography. J Anat 217:126–134

    PubMed  PubMed Central  Google Scholar 

  • Dartsch PC, Hämmerle H (1986) Orientation response of arterial smooth muscle cells to mechanical stimulation. Eur J Cell Biol 41:339–346

    CAS  PubMed  Google Scholar 

  • Denk W, Horstmann H (2004) Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol 2:e329

    PubMed  PubMed Central  Google Scholar 

  • Deprés-Tremblay G, Chevrier A, Snow M, Hurtig MB, Rodeo S, Buschmann MD (2016) Rotator cuff repair: a review of surgical techniques, animal models, and new technologies under development. J Shoulder Elbow Surg 25:2078–2085

    PubMed  Google Scholar 

  • Fukuda T (2007) Structural organization of the gap junction network in the cerebral cortex. Neuroscientist 13:199–207

    CAS  PubMed  Google Scholar 

  • Goggin PM, Zygalakis KC, Oreffo RO, Schneider P (2016) High-resolution 3D imaging of osteocytes and computational modelling in mechanobiology: insights on bone development, ageing, health and disease. Eur Cell Mater 31:264–295

    CAS  PubMed  Google Scholar 

  • Han X, Amar S (2003) IGF-1 signaling enhances cell survival in periodontal ligament fibroblasts vs. gingival fibroblasts. J Dent Res 82:454–459

    CAS  PubMed  Google Scholar 

  • Hand AR, Frank ME (2014) Fundamentals of oral histology and physiology. Wiley, Hoboken

    Google Scholar 

  • Haniffa MA, Collin MP, Buckley CD, Dazzi F (2009) Mesenchymal stem cells: the fibroblasts’ new clothes? Haematologica 94:258–263

    CAS  PubMed  Google Scholar 

  • Hayworth KJ, Morgan JL, Schalek R, Berger DR, Hildebrand DG, Lichtman JW (2014) Imaging ATUM ultrathin section libraries with WaferMapper: a multi-scale approach to EM reconstruction of neural circuits. Front Neural Circuits 8:68

    PubMed  PubMed Central  Google Scholar 

  • Hirashima S, Ohta K, Kanazawa T, Okayama S, Togo A, Uchimura N, Kusukawa J, Nakamura KI (2016) Three-dimensional ultrastructural analysis of cells in the periodontal ligament using focused ion beam/scanning electron microscope tomography. Sci Rep 6:39435

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hirashima S, Ohta K, Kanazawa T, Okayama S, Togo A, Miyazono Y, Kusukawa J, Nakamura KI (2018) Three-dimensional ultrastructural analysis and histomorphometry of collagen bundles in the periodontal ligament using focused ion beam/scanning electron microscope tomography. J Periodontal Res. https://doi.org/10.1111/jre.12592

    Article  PubMed  Google Scholar 

  • Ivanovski S, Haase HR, Bartold PM (2001) Expression of bone matrix protein mRNAs by primary and cloned cultures of the regenerative phenotype of human periodontal fibroblasts. J Dent Res 80:1665–1671

    CAS  PubMed  Google Scholar 

  • Jahn KA, Barton DA, Kobayashi K, Ratinac KR, Overall RL, Braet F (2012) Correlative microscopy: providing new understanding in the biomedical and plant sciences. Micron 43:565–582

    CAS  PubMed  Google Scholar 

  • Kalson NS, Lu Y, Taylor SH, Starborg T, Holmes DF, Kadler KE (2015) A structure-based extracellular matrix expansion mechanism of fibrous tissue growth. Elife 4:05958

    Google Scholar 

  • Kamioka H (2015) Osteocyte bioimaging. J Oral Biosci 57:61–64

    Google Scholar 

  • Kamioka H, Honjo T, Takano-Yamamoto T (2001) A three-dimensional distribution of osteocyte processes revealed by the combination of confocal laser scanning microscopy and differential interference contrast microscopy. Bone 28:145–149

    CAS  PubMed  Google Scholar 

  • Knott G, Marchman H, Wall D, Lich B (2008) Serial section scanning electron microscopy of adult brain tissue using focused ion beam milling. J Neurosci 28:2959–2964

    CAS  PubMed  PubMed Central  Google Scholar 

  • Komuro T (1982) The interstitial cells in the colon of the rabbit. Scanning and transmission electron microscopy. Cell Tissue Res 222:41–51

    CAS  PubMed  Google Scholar 

  • Kumar G (2014) Orban’s oral histology & embryology. Elsevier, Philadelphia

    Google Scholar 

  • Lekic P, Mcculloch CA (1996) Periodontal ligament cell population: the central role of fibroblasts in creating a unique tissue. Anat Rec 245:327–341

    CAS  PubMed  Google Scholar 

  • Liebi M, Georgiadis M, Menzel A, Schneider P, Kohlbrecher J, Bunk O, Guizar-Sicairos M (2015) Nanostructure surveys of macroscopic specimens by small-angle scattering tensor tomography. Nature 527:349–352

    CAS  PubMed  Google Scholar 

  • Louridis O, Demetriou N, Bazopoulou-Kyrkanidou E (1974) Periodontal ligament thickness as related to age and mesiocclusal drifting of teeth: a histometric study. J Periodontol 45:862–865

    CAS  PubMed  Google Scholar 

  • Luo M, Luo Y, Mao N, Huang G, Teng C, Wang H, Wu J, Liao X, Yang J (2018) Cancer-associated fibroblasts accelerate malignant progression of non-small cell lung cancer via connexin 43-formed unidirectional gap junctional intercellular communication. Cell Physiol Biochem 51:315–336

    CAS  PubMed  Google Scholar 

  • Martins-Marques T, Anjo SI, Pereira P, Manadas B, Girão H (2015) Interacting network of the gap junction (GJ) protein connexin43 (Cx43) is modulated by ischemia and reperfusion in the heart. Mol Cell Proteomics 14:3040–3055

    CAS  PubMed  PubMed Central  Google Scholar 

  • McCulloch CA, Lekic P, McKee MD (2000) Role of physical forces in regulating the form and function of the periodontal ligament. Periodontol 2000 24:56–72

    CAS  PubMed  Google Scholar 

  • Meda P, Haefliger JA (2016) Connexins and pannexins: from biology towards clinical targets. Swiss Med Wkly 146:w14365

    PubMed  Google Scholar 

  • Micheva KD, Smith SJ (2007) Array tomography: a new tool for imaging the molecular architecture and ultrastructure of neural circuits. Neuron 55:25–36

    CAS  PubMed  PubMed Central  Google Scholar 

  • Montgomery J, Ghatnekar GS, Grek CL, Moyer KE, Gourdie RG (2018) Connexin 43-based therapeutics for dermal wound healing. Int J Mol Sci 19:E1778

    PubMed  Google Scholar 

  • Naveh GR, Weiner S (2015) Initial orthodontic tooth movement of a multirooted tooth: A 3D study of a rat molar. Orthod Craniofac Res 18:134–142

    CAS  PubMed  Google Scholar 

  • Naveh GR, Brumfeld V, Shahar R, Weiner S (2013) Tooth periodontal ligament: Direct 3D microCT visualization of the collagen network and how the network changes when the tooth is loaded. J Struct Biol 181:108–115

    PubMed  Google Scholar 

  • Naveh GRS, Foster JE, Silva Santisteban TM, Yang X, Olsen BR (2018) Nonuniformity in ligaments is a structural strategy for optimizing functionality. Proc Natl Acad Sci U S A 115:9008–9013

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nishida T, Yasumoto K, Otori T, Desaki J (1988) The network structure of corneal fibroblasts in the rat as revealed by scanning electron microscopy. Invest Ophthalmol Vis Sci 29:1887–1890

    CAS  PubMed  Google Scholar 

  • Ohno N, Katoh M, Saitoh Y, Saitoh S, Ohno S (2015) Three-dimensional volume imaging with electron microscopy toward connectome. Microscopy (Oxf) 64:17–26

    CAS  Google Scholar 

  • Osswald M, Jung E, Sahm F, Solecki G, Venkataramani V, Blaes J, Weil S, Horstmann H, Wiestler B, Syed M, Huang L, Ratliff M, Karimian Jazi K, Kurz FT, Schmenger T, Lemke D, Gömmel M, Pauli M, Liao Y, Häring P, Pusch S, Herl V, Steinhäuser C, Krunic D, Jarahian M, Miletic H, Berghoff AS, Griesbeck O, Kalamakis G, Garaschuk O, Preusser M, Weiss S, Liu H, Heiland S, Platten M, Huber PE, Kuner T, von Deimling A, Wick W, Winkler F (2015) Brain tumour cells interconnect to a functional and resistant network. Nature 528:93–98

    CAS  PubMed  Google Scholar 

  • Prakoura N, Kavvadas P, Chadjichristos CE (2018) Connexin 43: a new therapeutic target against chronic kidney disease. Cell Physiol Biochem 49:985

    PubMed  Google Scholar 

  • Qian L, Todo M, Morita Y, Matsushita Y, Koyano K (2009) Deformation analysis of the periodontium considering the viscoelasticity of the periodontal ligament. Dent Mater 25:1285–1292

    PubMed  Google Scholar 

  • Sear RP, Pagonabarraga I, Flaus A (2015) Life at the mesoscale: the self-organised cytoplasm and nucleoplasm. BMC Biophys 8:4

    PubMed  PubMed Central  Google Scholar 

  • Shimono M, Ishikawa T, Ishikawa H, Matsuzaki H, Hashimoto S, Muramatsu T, Shima K, Matsuzaka K, Inoue T (2003) Regulatory mechanisms of periodontal regeneration. Microsc Res Tech 60:491–502

    CAS  PubMed  Google Scholar 

  • Sokos D, Everts V, De Vries TJ (2015) Role of periodontal ligament fibroblasts in osteoclastogenesis: a review. J Periodontal Res 50:152–159

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Naohisa Uchimura and Prof. Jingo Kusukawa for their support and mentoring; and Mr. Akinobu Togo, Mr. Ryuhei Higashi, Ms. Satoko Okayama, and Ms. Risa Tuneyoshi for technical assistance. This study was supported by Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Young Scientists (B) (Grant No. JP17K17090) and a JSPS Grant-in-Aid for Scientific Research (B) (Grant No. 26293040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shingo Hirashima.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirashima, S., Kanazawa, T., Ohta, K. et al. Three-dimensional ultrastructural imaging and quantitative analysis of the periodontal ligament. Anat Sci Int 95, 1–11 (2020). https://doi.org/10.1007/s12565-019-00502-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12565-019-00502-5

Keywords

Navigation