Skip to main content
Log in

Evaluation of Bacterial Contamination as an Indicator of Viral Contamination in a Sedimentary Aquifer in Uruguay

  • Original Paper
  • Published:
Food and Environmental Virology Aims and scope Submit manuscript

Abstract

In Uruguay, groundwater is frequently used for agricultural activities, as well as for human consumption in urban and rural areas. As in many countries worldwide, drinking water microbiological quality is evaluated only according to bacteriological standards and virological analyses are not mentioned in the legislation. In this work, the incidence of human viral (Rotavirus A, Norovirus GII, and human Adenovirus) and bacterial (total and thermotolerant coliform and Pseudomonas aeruginosa) contamination in groundwater in the Salto district, Uruguay, as well as the possible correlation between these groups of microorganisms, was studied. From a total of 134 groundwater samples, 42 (32.1%) were positive for Rotavirus, only 1 (0.7%) for both Rotavirus and Adenovirus, and 96 (72.6%) samples were positive for bacterial indicators. Results also show that Rotavirus presence was not associated with changes in chemical composition of the aquifer water. Bacteriological indicators were not adequate to predict the presence of viruses in individual groundwater samples (well scale), but a deeper spatial–temporal analysis showed that they are promising candidates to assess the viral contamination degree at aquifer scale, since from the number of wells with bacterial contamination the number of wells with viral contamination could be estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbaszadegan, M., Stewart, P., & LeChevallier, M. (1999). A strategy for detection of viruses in groundwater by PCR. Applied and Environmental Microbiology, 65(2), 444–449.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Allard, A., Albinsson, B., & Wadell, G. (2001). Rapid typing of human adenoviruses by a general PCR combined with restriction endonuclease analysis. Journal of Clinical Microbiology, 39(2), 498–505.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Andrade, J. D., Rocha, M. S., Carvalho-Costa, F. A., Fioretti, J. M., Xavier, M. D., Nunes, Z. M., et al. (2014). Noroviruses associated with outbreaks of acute gastroenteritis in the State of Rio Grande do Sul, Brazil, 2004-2011. Journal of Clinical Virology, S1386–6532(14), 00324-2.

    Google Scholar 

  • APHA. (1992). American Public Health Association, Standard Methods for the Examination of Water and Wastewater (18th ed.). Washington, DC.

  • Armanious, A., Aeppli, M., Jacak, R., Refardt, D., Sigstam, T., Kohn, T., et al. (2015). Viruses at solid–water interfaces: A systematic assessment of interactions driving adsorption. Environmental Science and Technology, 50(2), 732–743.

    Article  PubMed  Google Scholar 

  • Atmar, R. L., Opekun, A. R., Gilger, M. A., Estes, M. K., Crawford, S. E., Neill, F. H., et al. (2014). Determination of the 50% human infectious dose for Norwalk virus. Journal of Infectious Diseases, 209(7), 1016–1022.

    Article  PubMed  Google Scholar 

  • Boehm, A. B., & Soller, J. A. (2013). Recreational water risk: pathogens and fecal indicators. Environmental toxicology (pp. 441–459). New York: Springer.

    Chapter  Google Scholar 

  • Bohn, H., McNeal, B. L., & O’Connor, G. (1979). Soil chemistry. New York: Wiley.

    Google Scholar 

  • Borchardt, M. A., Bertz, P. D., Spencer, S. K., & Battigelli, D. A. (2003). Incidence of Enteric Viruses in Groundwater from Household Wells in Wisconsin. Applied and Environment Microbiology. https://doi.org/10.1128/AEM.69.2.1172-1180.2003.

    Article  Google Scholar 

  • Bosch, A., Pintó, R. M., & Abad, F. X. (2006). Survival and transport of enteric viruses in the environment. In: Viruses in foods (pp. 151–187). New York: Springer.

  • Bossi, J., & Navarro, R. (1996). Geología del Uruguay, Universidad de la República, Depto. de Publicaciones, ISBN: 978-9974-0-0002-5

  • Botes, M., de Kwaadsteniet, M., & Cloete, T. E. (2013). Application of quantitative PCR for the detection of microorganisms in water. Analytical and Bioanalytical Chemistry, 405(1), 91–108.

    Article  PubMed  CAS  Google Scholar 

  • Calgua, B., Mengewein, A., Grunert, A., Bofill-Mas, S., Clemente-Casares, P., Hundesa, A., et al. (2008). Development and application of a one-step low cost procedure to concentrate viruses from seawater samples. Journal of Virological Methods, 153(2), 79–83.

    Article  PubMed  CAS  Google Scholar 

  • Cao, H., Tsai, F. T. C., & Rusch, K. A. (2010). Salinity and soluble organic matter on virus sorption in sand and soil columns. Groundwater, 48(1), 42–52.

    Article  CAS  Google Scholar 

  • Chan, M. C., Sung, J. J., Lam, R. K., Chan, P. K., Lee, N. L., Lai, R. W., et al. (2006). Fecal viral load and NoV-associated gastroenteritis. Emerging Infectious Diseases, 12(8), 1278–1280.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chapman, D. V. (Ed.). (1996). Water quality assessments: A guide to use biota, sediments and water, environmental monitoring (2nd ed.). London: UNESCO, WHO, and UNEP. E & FN Spon.

    Google Scholar 

  • Cho, H. G., Lee, S. G., Kim, W. H., Lee, J. S., Park, P. H., Cheon, D. S., et al. (2014). Acute gastroenteritis outbreaks associated with ground-waterborne NoV in South Korea during 2008-2012. Epidemiology and Infection, 142(12), 2604–2609.

    Article  PubMed  CAS  Google Scholar 

  • Chrysikopoulos, C. V., & Sim, Y. (1996). One-dimensional virus transport in homogeneous porous media with time-dependent distribution coefficient. Journal of Hydrology, 185, 199–219.

    Article  Google Scholar 

  • Churgay, C. A., & Aftab, Z. (2012). Gastroenteritis in children: Part 1 Diagnosis. American Family Physician, 85(11), 1059–1062.

    PubMed  Google Scholar 

  • De Giglio, O., Caggiano, G., Bagordo, F., Barbuti, G., Brigida, S., Lugoli, F., et al. (2017). Enteric viruses and fecal bacteria indicators to assess groundwater quality and suitability for irrigation. International Journal of Environmental Research and Public Health, 14(6), 558.

    Article  PubMed Central  Google Scholar 

  • Desselberger, U. (1999). RVA infections: Guidelines for treatment and prevention. Drugs, 58(3), 447–452.

    Article  PubMed  CAS  Google Scholar 

  • DINAMA, “Dirección Nacional de Medio Ambiente”. (1996). Manual de procedimientos analíticos para aguas y efluentes. Ministerio de Vivienda, Ordenamiento Territorial y Medio Ambiente). Laboratorio de DINAMA - Edición 1996.

  • Diston, D., Sinreich, M., Zimmermann, S., Baumgartner, A., & Felleisen, R. (2015). Evaluation of Molecular- and Culture-Dependent MST Markers to Detect Fecal Contamination and Indicate Viral Presence in Good Quality Groundwater. Environmental Science and Technology, 49(12), 7142–7151.

    Article  PubMed  CAS  Google Scholar 

  • Dowd, S. E., Pillai, S. D., Wang, S., & Corapcioglu, M. Y. (1998). Delineating the specific influence of virus isoelectric point and size on virus adsorption and transport through sandy soils. Applied and Environmental Microbiology, 64(2), 405–410.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Espinosa, A. C., Mazari-Hiriart, M., Espinosa, R., Maruri-Avidal, L., Méndez, E., & Arias, C. F. (2008). Infectivity and genome persistence of RVA and astrovirus in groundwater and surface water. Water Research, 42(10–11), 2618–2628.

    Article  PubMed  CAS  Google Scholar 

  • Estes, M., & Greenberg, H. (2013). RVAes. In D. M. Knipe, P. M. Howley, J. I. Cohen, D. E. Griffin, R. A. Lamb, M. A. Martin, et al. (Eds.), Fields Virology (6th ed.). Philadelphia: Wolters Kluwer Business/Lippincott Williams and Wilkins.

    Google Scholar 

  • Evers, S., & Lerner, D. N. (1998). How uncertain is our estimate of a wellhead protection zone? Groundwater, 36(1), 49–57.

    Article  CAS  Google Scholar 

  • Farkas, K., Varsani, A., & Pang, L. (2014). Adsorption of RVA, MS2 bacteriophage and surface-modified silica nanoparticles to hydrophobic matter. Food and Environmental Virology. https://doi.org/10.1007/s12560-014-9171-3.

    Article  PubMed  Google Scholar 

  • Fawell, J., & Nieuwenhuijsen, M. J. (2003). Contaminants in drinking water. British Medical Bulletin, 68, 199–208.

    Article  PubMed  CAS  Google Scholar 

  • Ferguson, A. S., Layton, A. C., Mailloux, B. J., Culligan, P. J., Williams, D. E., Smartt, A. E., et al. (2012). Comparison of fecal indicators with pathogenic bacteria and RVA in groundwater. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2012.05.060.

    Article  PubMed  Google Scholar 

  • Fong, T. T., & Lipp, E. K. (2005). Enteric viruses of human and animals in aquatic environments: Health risks, detection, and potential water quality assessment tools. Microbiology and Molecular Biology Reviews, 69(2), 357–371.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gerba, C. P., Goyal, S. M., LaBelle, R. L., Cech, I., & Bodgan, G. F. (1979). Failure of indicator bacteria to reflect the occurrence of enteroviruses in marine waters. American Journal of Public Health, 69(11), 1116–1119.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gerba, C. P., Rose, J., & Haas, C. (1996). Sensitive populations: Who is at the great risk? Food Microbiology, 30, 113–123.

    Article  CAS  Google Scholar 

  • Gersberg, R. M., Rose, M. A., Robles-Sikisaka, R., & Dhar, A. K. (2006). Quantitative detection of hepatitis A virus and enteroviruses near the United States-Mexico border and correlation with levels of fecal indicator bacteria. Applied and Environmental Microbiology, 72(12), 7438–7444.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goyal, S. M., & Gerba, C. P. (1979). Comparative adsorption of human enteroviruses, simian rotavirus, and selected bacteriophages to soils. Applied and Environmental Microbiology, 38(2), 241–247.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Graham, D. Y., Dufour, G. R., & Estes, M. K. (1987). Minimal infective dose of RVA. Archives of Virology, 92, 261–271.

    Article  PubMed  CAS  Google Scholar 

  • Griffin, J. S., Plummer, J. D., & Long, S. C. (2008). Torque teno virus: an improved indicator for viral pathogens in drinking waters. Virology Journal, 5, 112.

    Article  PubMed  PubMed Central  Google Scholar 

  • Guerrero-Latorre, L., Carratala, A., Rodriguez-Manzano, J., Calgua, B., Hundesa, A., & Girones, R. (2011). Occurrence of water-borne enteric viruses in two settlements based in Eastern Chad: Analysis of hepatitis E virus, hepatitis A virus and human HAdV in water sources. Journal of Water and Health, 9(3), 515–524.

    Article  PubMed  Google Scholar 

  • Haramoto, E., Yamada, K., & Nishida, K. (2011). Prevalence of protozoa, viruses, coliphages and indicator bacteria in groundwater and river water in the Kathmandu Valley, Nepal. Transactions of the Royal Society of Tropical Medicine and Hygiene, 105(12), 711–716.

    Article  PubMed  Google Scholar 

  • Hoa Tran, T. N., Trainor, E., Nakagomi, T., Cunliffe, N. A., & Nakagomi, O. (2013). Molecular epidemiology of noroviruses associated with acute sporadic gastroenteritis in children: Global distribution of genogroups, genotypes and GII.4 variants. Journal of Clinical Virology, 56(3), 185–193.

    Article  PubMed  CAS  Google Scholar 

  • Hot, D., Legeay, O., Jacques, J., Gantzer, C., Caudrelier, Y., Guyard, K., et al. (2003). Detection of somatic phages, infectious enteroviruses and enterovirus genomes as indicators of human enteric viral pollution in surface water. Water Research, 37(19), 4703–4710.

    Article  PubMed  CAS  Google Scholar 

  • Hynds, P. H., Thomas, M. K., & Milena Pintar, K. D. (2014). Contamination of groundwater systems in the US and Canada by enteric pathogens, 1990–2013: A review and pooled-analysis. PLoS ONE, 9(5), e93301. https://doi.org/10.1371/journal.pone.0093301.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • I.N.E. “Instituto Nacional de Estadística”. (2011). Censos 2011. http://www5.ine.gub.uy/censos2011/index.html.

  • Jung, J. H., Yoo, C. H., Koo, E. S., Kim, H. M., Na, Y., Jheong, W. H., et al. (2011). Occurrence of norovirus and other enteric viruses in untreated groundwaters of Korea. J Water Health, 9(3), 544–555.

    Article  PubMed  CAS  Google Scholar 

  • Kageyama, T., Kojima, S., Shinohara, M., Uchida, K., Fukushi, S., Hoshino, F. B., et al. (2003). Broadly reactive and highly sensitive assay for Norwalk-like viruses based on real-time quantitative reverse transcription-PCR. Journal of Clinical Microbiology, 41(4), 1548–1557.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lambertini, E., Spencer, S. K., Kieke, B. A., Jr., Loge, F. J., & Borchardt, M. A. (2011). Virus contamination from operation and maintenance events in small drinking water distribution systems. Journal of Water and Health, 9(4), 799–812.

    Article  PubMed  Google Scholar 

  • Lee, G. C., Jheong, W. H., Jung, G. S., Oh, S. A., Kim, M. J., Rhee, O. J., et al. (2012). Detection and molecular characterization of human noroviruses in Korean groundwater between 2008 and 2010. Food and environmental virology, 4(3), 115–123.

    Article  PubMed  CAS  Google Scholar 

  • Michen, B., & Graule, T. (2010). Isoelectric points of viruses. Journal of Applied Microbiology, 109(2), 388–397.

    PubMed  CAS  Google Scholar 

  • MSP, “Ministerio de Salud Pública”. (2011). Reglamento Bromatológico Nacional, Decreto N° 315/994 y su modificatorio 375/011- Capítulo 25 Sección I (Agua).

  • OSE, “Administración de las Obras Sanitarias del Estado”. (2006). Norma Interna De Calidad De Agua Potable, Diciembre, 2006

  • Pachepsky, Y., Shelton, D. R., McLain, J. E. T., Patel, J., & Mandrell, R. E. (2011). Irrigation waters as a source of pathogenic microorganisms in produce: A review. Advances in Agronomy, 113, 75–141.

    Article  Google Scholar 

  • Park, S. H., Kim, E. J., Yun, T. H., Lee, J. H., Kim, C. K., Seo, Y. H., et al. (2010). Human enteric viruses in groundwater. Food and Environmental Virology, 2(2), 69–73.

    Article  CAS  Google Scholar 

  • Payment, P., & Locas, A. (2011). Pathogens in water: Value and limits of correlation with microbial indicators. Ground Water. https://doi.org/10.1111/j.1745-6584.2010.00710.x.

    Article  PubMed  Google Scholar 

  • Payne, D. C., Vinje, J., Szilagyi, P. G., Edwards, K. M., Staat, M. A., Weinberg, G. A., et al. (2013). NoV and medically attended gastroenteritis in US children. New England Journal of Medicine, 368(12), 1121–1130.

    Article  PubMed  CAS  Google Scholar 

  • Qin, M., Dong, X. G., Jing, Y. Y., Wei, X. X., Wang, Z. E., Feng, H. R., et al. (2016). A waterborne gastroenteritis outbreak caused by norovirus GII. 17 in a Hotel, Hebei, China, December 2014. Food and Environmental Virology, 8(3), 180–186.

    Article  PubMed  Google Scholar 

  • Rajal, V. B., McSwain, B. S., Thompson, D. E., Leutenegger, C. M., Kildare, B. J., & Wuertz, S. (2007). Validation of hollow fiber ultrafiltration and real-time PCR using bacteriophage PP7 as surrogate for the quantification of viruses from water samples. Water Research, 41(7), 1411–1422.

    Article  PubMed  CAS  Google Scholar 

  • Rames, E., Roiko, A., Stratton, H., & Macdonald, J. (2016). Technical aspects of using human HAdV as a viral water quality indicator. Water Research, 96, 308–326.

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Lázaro, D., Cook, N., Ruggeri, F. M., Sellwood, J., Nasser, A., Nascimento, M. S. J., et al. (2012). Virus hazards from food, water and other contaminated environments. FEMS Microbiology Reviews, 36(4), 786–814.

    Article  PubMed  Google Scholar 

  • Rose, M. A., Dhar, A. K., Brooks, H. A., Zecchini, F., & Gersberg, R. M. (2006). Quantitation of hepatitis A virus and enterovirus levels in the lagoon canals and Lido beach of Venice, Italy, using real-time RT-PCR. Water Research, 40(12), 2387–2396.

    Article  PubMed  CAS  Google Scholar 

  • Scandura, J. E., & Sobsey, M. D. (1997). Viral and bacterial contamination of groundwater from on-site sewage treatment systems. Water Science and Technology, 35(11–12), 141–146.

    Article  CAS  Google Scholar 

  • Schijven, J. F., & Hassanizadeh, S. M. (2000). Removal of viruses by soil passage: Overview of modeling, processes, and parameters. Critical reviews in environmental science and technology, 30(1), 49–127.

    Article  CAS  Google Scholar 

  • Schijven, J. F., Mülschlegel, J. H. C., Hassanizadeh, S. M., Teunis, P. F. M., & de Roda Husman, A. M. (2006). Determination of protection zones for Dutch groundwater wells against virus contamination-uncertainty and sensitivity analysis. Journal of Water and Health, 4(3), 297–312.

    Article  PubMed  CAS  Google Scholar 

  • Seitz, S. R., Leon, J. S., Schwab, K. J., Lyon, G. M., Dowd, M., McDaniels, M., et al. (2011). NoV infectivity in humans and persistence in water. Applied and Environment Microbiology, 77(19), 6884–6888.

    Article  CAS  Google Scholar 

  • Sidhu, J. P. S., Toze, S., Hodgers, L., Shackelton, M., Barry, K., Page, D., et al. (2010). Pathogen inactivation during passage of stormwater through a constructed reedbed and aquifer transfer, storage and recovery. Water Science and Technology, 62(5), 1190–1197.

    Article  PubMed  CAS  Google Scholar 

  • Siebenga, J. J., Vennema, H., Zheng, D. P., Vinjé, J., Lee, B. E., Pang, X. L., et al. (2009). Norovirus illness is a global problem: Emergence and spread of norovirus GII.4 variants, 2001-2007. Journal of Infectious Diseases, 200(5), 802–812.

    Article  PubMed  Google Scholar 

  • Tao, C. W., Hsu, B. M., Kao, P. M., Huang, W. C., Hsu, T. K., Ho, Y. N., et al. (2016). Seasonal difference of human adenoviruses in a subtropical river basin based on 1-year monthly survey. Environmental Science and Pollution Research, 23(3), 2928–2936.

    Article  PubMed  CAS  Google Scholar 

  • Tort, L. F. L., Victoria, M., Lizasoain, A., Castells, M., Maya, L., Gómez, M. M., et al. (2015). Molecular epidemiology of group a rotavirus among children admitted to hospital in Salto, Uruguay, 2011‐2012: First detection of the emerging genotype G12. Journal of Medical Virology, 87(5), 754–763.

    Article  PubMed  CAS  Google Scholar 

  • Victoria, M., Tort, L. F., García, M., Lizasoain, A., Maya, L., Leite, J. P., et al. (2014). Assessment of gastroenteric viruses from wastewater directly discharged into Uruguay River, Uruguay. Food Environ Virol.. https://doi.org/10.1007/s12560-014-9143-7.

    Article  PubMed  Google Scholar 

  • WHO, World Health Organization. (2011). Guidelines for Drinking-water Quality, (4th ed.)

  • WHO, World Health Organization. (2014). Preventing diarrhoea through better water, sanitation and hygiene: exposures and impacts in low- and middle-income countries.

  • Xagoraraki, I., Yin, Z., & Svambayev, Z. (2014). Fate of viruses in water systems. Journal of Environmental Engineering. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000827.

    Article  Google Scholar 

  • Yates, M. V., Gerba, C. P., & Kelley, L. E. (1985). Virus persistence in groundwater. Applied and Environment Microbiology, 49, 778–781.

    CAS  Google Scholar 

  • Zeng, S. Q., Halkosalo, A., Salminen, M., Szakal, E. D., Puustinen, L., & Vesikari, T. (2008). One-step quantitative RT-PCR for the detection of RVA in acute gastroenteritis. Journal of Virological Methods, 153(2), 238–240.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We want to thank the National Research and Innovation Agency ANII (‘‘Agencia Nacional de Investigación e Innovación’’) for the financial support through project FMV_2_2011_1_6927, and Teresita Porochin and Sergio Aguirre for their collaboration during the assembly of the proposal and the early stages of the research. We would also want to thank the Salto’s Local Government (“Intendencia Municipal de Salto”) for allowing the use of their laboratory and to the technicians Marcelo Lucas and Ana María Escanda. We would especially like to thank all the well owners that collaborated with the project by allowing for sample collection. We also thank Prof. Dr. Majid Hassanizadeh from Utrecht University and Prof. Dr. Jan Willem Foppen from UNESCO-IHE for their selfless support and guidance during the first stages of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Colina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gamazo, P., Victoria, M., Schijven, J.F. et al. Evaluation of Bacterial Contamination as an Indicator of Viral Contamination in a Sedimentary Aquifer in Uruguay. Food Environ Virol 10, 305–315 (2018). https://doi.org/10.1007/s12560-018-9341-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12560-018-9341-9

Keywords

Navigation