Skip to main content
Log in

Regulation of the RyR channel gating by Ca2+ and Mg2+

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

Ryanodine receptors (RyRs) are the Ca2+ release channels in the sarcoplasmic reticulum in striated muscle which play an important role in excitation-contraction coupling and cardiac pacemaking. Single channel recordings have revealed a wealth of information about ligand regulation of RyRs from mammalian skeletal and cardiac muscle (RyR1 and RyR2, respectively). RyR subunit has a Ca2+ activation site located in the luminal and cytoplasmic domains of the RyR. These sites synergistically feed into a common gating mechanism for channel activation by luminal and cytoplasmic Ca2+. RyRs also possess two inhibitory sites in their cytoplasmic domains with Ca2+ affinities of the order of 1 μM and 1 mM. Magnesium competes with Ca2+ at these sites to inhibit RyRs and this plays an important role in modulating their Ca2+-dependent activity in muscle. This review focuses on how these sites lead to RyR modulation by Ca2+ and Mg2+ and how these mechanisms control Ca2+ release in excitation-contraction coupling and cardiac pacemaking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Balog EM, Fruen BR, Shomer NH, Louis CF (2001) Divergent effects of the malignant hyperthermia-susceptible arg(615)cys mutation on the Ca2+ and Mg2+ dependence of the RyR1. Biophys J 81:2050–2058

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Benkusky NA et al (2007) Intact beta-adrenergic response and unmodified progression toward heart failure in mice with genetic ablation of a major protein kinase A phosphorylation site in the cardiac ryanodine receptor. Circ Res 101:819–829. https://doi.org/10.1161/CIRCRESAHA.107.153007

    Article  PubMed  CAS  Google Scholar 

  • Bers DM (2002a) Calcium and cardiac rhythms: physiological and pathophysiological. Circ Res 90:14–17

    Article  PubMed  CAS  Google Scholar 

  • Bers DM (2002b) Cardiac excitation-contraction coupling. Nature 415

  • Bers DM (2002c) Cardiac excitation-contraction coupling. Nature 415:198–205

    Article  PubMed  CAS  Google Scholar 

  • Bers DM, Peskoff A (1991) Diffusion around a cardiac calcium channel and the role of surface bound calcium. Biophys J 59:703–721

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bezprozvanny I, Watras J, Ehrlich BE (1991) Bell-shaped calcium-response curves of Ins(1,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature 351:751–754. https://doi.org/10.1038/351751a0

    Article  PubMed  CAS  Google Scholar 

  • Bhat MB, Zhao J, Hayek S, Freeman EC, Takeshima H, Ma J (1997) Deletion of amino acids 1641-2437 from the foot region of skeletal muscle ryanodine receptor alters the conduction properties of the Ca release channel. Biophys J 73:1320–1328

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blazev R, Lamb GD (1999a) Adenosine inhibits depolarization-induced Ca2+ release in mammalian skeletal muscle. Muscle Nerve 22:1674–1683

    Article  PubMed  CAS  Google Scholar 

  • Blazev R, Lamb GD (1999b) Low [ATP] and elevated [Mg2+] reduce depolarization-induced Ca2+ release in rat skinned skeletal muscle fibres. JPhysiolLond 520:203–215

    CAS  Google Scholar 

  • Cannell MB, Kong CH (2012) Local control in cardiac E-C coupling. J Mol Cell Cardiol 52:298–303. https://doi.org/10.1016/j.yjmcc.2011.04.014

    Article  PubMed  CAS  Google Scholar 

  • Cannell MB, Kong CH, Imtiaz MS, Laver DR (2013) Control of sarcoplasmic reticulum Ca2+ release by stochastic RyR gating within a 3D model of the cardiac dyad and importance of induction decay for CICR termination. Biophys J 104:2149–2159. https://doi.org/10.1016/j.bpj.2013.03.058

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carter S, Colyer J, Sitsapesan R (2006) Maximum phosphorylation of the cardiac ryanodine receptor at serine-2809 by protein kinase a produces unique modifications to channel gating and conductance not observed at lower levels of phosphorylation. Circ Res 98:1506–1513

    Article  PubMed  CAS  Google Scholar 

  • Chen W et al (2014) The ryanodine receptor store-sensing gate controls Ca2+ waves and Ca2+-triggered arrhythmias. Nat Med 20:184–192. https://doi.org/10.1038/nm.3440

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheng H, Lederer WJ, Cannell MB (1993) Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science 262:740–744

    Article  PubMed  CAS  Google Scholar 

  • Ching LL, Williams AJ, Sitsapesan R (2000) Evidence for Ca2+ activation and inactivation sites on the luminal side of the cardiac ryanodine receptor complex. Circ Res 87:201–206

    Article  PubMed  CAS  Google Scholar 

  • Coronado R, Morrissette J, Sukhareva M, Vaughan DM (1994) Structure and function of ryanodine receptors. Am J Physiol 266:C1485–C1504

    Article  PubMed  CAS  Google Scholar 

  • Currie S, Loughrey CM, Craig MA, Smith GL (2004) Calcium/calmodulin-dependent protein kinase II delta associates with the ryanodine receptor complex and regulates channel function in rabbit heart. Biochem J 377:357–366

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • des Georges A et al (2016) Structural basis for gating and activation of RyR1. Cell 167:145–157. https://doi.org/10.1016/j.cell.2016.08.075

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dibb KM, Graham HK, Venetucci LA, Eisner DA, Trafford AW (2007) Analysis of cellular calcium fluxes in cardiac muscle to understand calcium homeostasis in the heart. Cell Calcium 42:503–512

    Article  PubMed  CAS  Google Scholar 

  • Fabiato A (1983) Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Phys 245:C1–C14

    Article  CAS  Google Scholar 

  • Fabiato A (1985) Simulated calcium current can both cause calcium loading in and trigger calcium release from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. JGenPhysiol 85:291–320

    CAS  Google Scholar 

  • Ferrero P, Said M, Sanchez G, Vittone L, Valverde C, Donoso P, Mattiazzi A, Mundina-Weilenmann C (2007) Ca2+/calmodulin kinase II increases ryanodine binding and Ca2+-induced sarcoplasmic reticulum Ca2+ release kinetics during beta-adrenergic stimulation. J Mol Cell Cardiol 43:281–291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fessenden JD, Chen L, Wang Y, Paolini C, Franzini-Armstrong C, Allen PD, Pessah IN (2001) Ryanodine receptor point mutant E4032A reveals an allosteric interaction with ryanodine. Proc Natl Acad Sci U S A 98:2865–2870

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fryer MW, Stephenson DG (1996) Total and sarcoplasmic reticulum calcium contents of skinned fibres from rat skeletal muscle. JPhysiolLond 493:357–370

    CAS  Google Scholar 

  • Godt RE, Maughan DW (1988) On the composition of the cytosol of relaxed skeletal muscle of the frog. AmJPhysiol 254:C591–C604

    CAS  Google Scholar 

  • Guo T, Gillespie D, Fill M (2012) Ryanodine receptor current amplitude controls Ca2+ sparks in cardiac muscle. Circ Res 111:28–36 doi:CIRCRESAHA.112.265652

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huke S, Bers DM (2008) Ryanodine receptor phosphorylation at serine 2030, 2808 and 2814 in rat cardiomyocytes. Biochem Biophys Res Commun 376:80–85

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hymel L, Inui M, Fleischer S, Schindler H (1988) Purified ryanodine receptor of skeletal muscle sarcoplasmic reticulum forms Ca2+-activated oligomeric Ca2+ channels in planar bilayers. Proc Natl Acad Sci U S A 85:441–445

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang D et al (2005) Enhanced store overload-induced Ca2+ release and channel sensitivity to luminal Ca2+ activation are common defects of RyR2 mutations linked to ventricular tachycardia and sudden death. Circ Res 97:1173–1181

    Article  PubMed  CAS  Google Scholar 

  • Ju YK, Allen DG (1998) Intracellular calcium and Na+-Ca2+ exchange current in isolated toad pacemaker cells. JPhysiolLond 508:153–166

    CAS  Google Scholar 

  • Ju YK, Allen DG (2007) Store-operated Ca2+ entry and TRPC expression; possible roles in cardiac pacemaker tissue. Heart Lung Circ 16:349–355

    Article  PubMed  CAS  Google Scholar 

  • Kurebayashi N, Ogawa Y (2001) Depletion of Ca2+ in the sarcoplasmic reticulum stimulates Ca2+ entry into mouse skeletal muscle fibres. JPhysiolLond 533:185–199

    CAS  Google Scholar 

  • Lakatta EG, DiFrancesco D (2009) What keeps us ticking: a funny current, a calcium clock, or both? J Mol Cell Cardiol 47:157–170. https://doi.org/10.1016/j.yjmcc.2009.03.022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lamb GD (2000) Excitation-contraction coupling in skeletal muscle: comparisons with cardiac muscle. Clin Exp Pharmacol Physiol 27:216–224

    Article  PubMed  CAS  Google Scholar 

  • Lamb GD, Stephenson DG (1994) Effects of intracellular pH and [Mg2+] on excitation-contraction coupling in skeletal muscle fibres of the rat. JPhysiolLond 478:331–339

    CAS  Google Scholar 

  • Laver D (2010) Regulation of the RyR channel gating by Ca, Mg and ATP. In structure-function of calcium release channels. In: Serysheva I (ed) Current topics in membranes, vol 66. Elsevier, pp 69–89

  • Laver DR (2007) Ca2+ stores regulate ryanodine receptor Ca2+ release channels via luminal and cytosolic Ca2+ sites. Biophys J 92:3541–3555

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laver DR, Baynes TM, Dulhunty AF (1997a) Magnesium inhibition of ryanodine-receptor calcium channels: evidence for two independent mechanisms. J Memb Biol 156:213–229

    Article  CAS  Google Scholar 

  • Laver DR, Honen BN (2008) Luminal Mg2+, a key factor controlling RYR2-mediated Ca2+ release: cytoplasmic and luminal regulation modeled in a tetrameric channel. JGenPhysiol 132:429–446

    CAS  Google Scholar 

  • Laver DR, Kong CHT, Imtiaz MS, Cannell MB (2013) Termination of calcium-induced calcium release by induction decay: an emergent property of stochastic channel gating and molecular scale architecture. J Mol Cell Cardiol 54:98–100

    Article  PubMed  CAS  Google Scholar 

  • Laver DR, Lenz GK, Lamb GD (2001) Regulation of the calcium release channel from rabbit skeletal muscle by the nucleotides ATP, AMP, IMP and adenosine. JPhysiolLond 537:763–778

    CAS  Google Scholar 

  • Laver DR, O’Neill ER, Lamb GD (2004) Luminal Ca2+-regulated Mg2+ inhibition of skeletal RyRs reconstituted as isolated channels or coupled clusters. JGenPhysiol 124:741–758

    CAS  Google Scholar 

  • Laver DR, Owen VJ, Junankar PR, Taske NL, Dulhunty AF, Lamb GD (1997b) Reduced inhibitory effect of Mg2+ on ryanodine receptor-Ca2+ release channels in malignant hyperthermia. Biophys J 73:1913–1924

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laver DR, Roden LD, Ahern GP, Eager KR, Junankar PR, Dulhunty AF (1995) Cytoplasmic Ca2+ inhibits the ryanodine receptor from cardiac muscle. J Memb Biol 147:7–22

    Article  CAS  Google Scholar 

  • Li J, Imtiaz MS, Beard NA, Dulhunty AF, Thorne R, vanHelden DF, Laver DR (2013) ss-Adrenergic stimulation increases RyR2 activity via intracellular Ca2+ and Mg2+ regulation. PLoS One 8:e58334. https://doi.org/10.1371/journal.pone.0058334

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li P, Chen SR (2001) Molecular basis of Ca2+ activation of the mouse cardiac Ca2+ release channel (ryanodine receptor). J Gen Physiol 118:33–44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meissner G (1986) Ryanodine activation and inhibition of the Ca2+ release channel of sarcoplasmic reticulum. J Biol Chem 261:6300–6306

    PubMed  CAS  Google Scholar 

  • Meissner G (1994) Ryanodine receptor/Ca2+ release channels and their regulation by endogenous effectors. Annual Reviews in Physiology 56:485–508

    Article  CAS  Google Scholar 

  • Meissner G, Darling E, Eveleth J (1986) Kinetics of rapid Ca2+ release by sarcoplasmic reticulum. Effects of Ca2+, Mg2+, and adenine nucleotides. Biochemistry 25:236–244

    Article  PubMed  CAS  Google Scholar 

  • Meissner G, Henderson JS (1987) Rapid calcium release from cardiac sarcoplasmic reticulum vesicles is dependent on Ca2+ and is modulated by Mg2+, adenine nucleotide, and calmodulin. J Biol Chem 262:3065–3073

    PubMed  CAS  Google Scholar 

  • Meissner G, Rios E, Tripathy A, Pasek DA (1997) Regulation of skeletal muscle Ca2+ release channel (ryanodine receptor) by Ca2+ and monovalent cations and anions. J Biol Chem 272:1628–1638

    Article  PubMed  CAS  Google Scholar 

  • Ogawa Y (1994) Role of ryanodine receptors. Crit Rev Biochem Mol Biol 29:229–274

    Article  PubMed  CAS  Google Scholar 

  • Peng W et al (2016) Structural basis for the gating mechanism of the type 2 ryanodine receptor RyR2. Science 354. https://doi.org/10.1126/science.aah5324

  • Picht E, Zima AV, Shannon TR, Duncan AM, Blatter LA, Bers DM (2011) Dynamic calcium movement inside cardiac sarcoplasmic reticulum during release. Circ Res 108:847–856 doi:CIRCRESAHA.111.240234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Posterino GS, Lamb GD (2003) Effect of sarcoplasmic reticulum Ca2+ content on action potential-induced Ca2+ release in rat skeletal muscle fibres. JPhysiolLond 551:219–237

    CAS  Google Scholar 

  • Rigg L, Terrar DA (1996) Possible role of calcium release from the sarcoplasmic reticulum in pacemaking in guinea-pig sino-atrial node. Exp Physiol 81:877–880

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez P, Bhogal MS, Colyer J (2003) Stoichiometric phosphorylation of cardiac ryanodine receptor on serine 2809 by calmodulin-dependent kinase II and protein kinase a. J Biol Chem 278:38593–38600

    Article  PubMed  CAS  Google Scholar 

  • Shannon TR, Guo T, Bers DM (2003) Ca2+ scraps: local depletions of free [Ca2+] in cardiac sarcoplasmic reticulum during contractions leave substantial Ca2+ reserve. Circ Res 93:40–45

    Article  PubMed  CAS  Google Scholar 

  • Shomer NH, Louis CF, Fill M, Litterer LA, Mickelson JR (1993) Reconstitution of abnormalities in the malignant hyperthermia-susceptible pig ryanodine receptor. AmJPhysiol 264:C125–C135

    CAS  Google Scholar 

  • Sitsapesan R, Williams AJ (1994a) Gating of the native and purified cardiac SR Ca2+-release channels with monovalent cations as permeant species. Biophys J 67:1484–1494

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sitsapesan R, Williams AJ (1994b) Regulation of the gating of the sheep cardiac sarcoplasmic reticulum Ca2+-release channel by luminal Ca2+. J Memb Biol 137:215–226

    Article  CAS  Google Scholar 

  • Smith JS, Coronado R, Meissner G (1986) Single channel measurements of the calcium release channel from skeletal muscle sarcoplasmic reticulum. Activation by Ca2+ and ATP and modulation by Mg2+. JGenPhysiol 88:573–588

    CAS  Google Scholar 

  • Soeller C, Cannell MB (1997) Numerical simulation of local calcium movements during L-type calcium channel gating in the cardiac diad. Biophys J 73:97–111 doi:S0006-3495(97)78051-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stern MD, Cheng H (2004) Putting out the fire: what terminates calcium-induced calcium release in cardiac muscle? Cell Calcium 35:591–601

    Article  PubMed  CAS  Google Scholar 

  • Tanabe T, Beam KG, Adams BA, Niidome T, Numa S (1990) Regions of the skeletal muscle dihydropyridine receptor critical for excitation-contraction coupling. Nature 346:567–569

    Article  PubMed  CAS  Google Scholar 

  • Tripathy A, Meissner G (1996) Sarcoplasmic reticulum lumenal Ca2+ has access to cytosolic activation and inactivation sites of skeletal muscle Ca2+ release channel. Biophys J 70:2600–2615

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Helden DF (1993) Pacemaker potentials in lymphatic smooth muscle of the guinea-pig mesentery. J Physiol 471:465–479

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiao B et al (2006) Ser-2030, but not Ser-2808, is the major phosphorylation site in cardiac ryanodine receptors responding to protein kinase A activation upon beta-adrenergic stimulation in normal and failing hearts. Biochem J 396:7–16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu L, Mann G, Meissner G (1996) Regulation of cardiac Ca2+ release channel (ryanodine receptor) by Ca2+, H+, Mg2+, and adenine nucleotides under normal and simulated ischemic conditions. Circ Res 79:1100–1109

    Article  PubMed  CAS  Google Scholar 

  • Zahradnik I, Gyorke S, Zahradnikova A (2005) Calcium activation of ryanodine receptor channels—reconciling RyR gating models with tetrameric channel structure. J Gen Physiol 126:515–527

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zima AV, Picht E, Bers DM, Blatter LA (2008) Termination of cardiac Ca2+ sparks: role of intra-SR [Ca2+], release flux, and intra-SR Ca2+ diffusion Circ Res 103:e105–e115 doi:CIRCRESAHA.107.183236

Download references

Acknowledgments

Thanks to Dirk van Helden for suggesting the ‘Tipping Urn’ analogy in Fig. 2 and to Oliver Clarke for locating amino acids on the RyR1 structure in Fig. 1.

Funding

This work was supported by an infrastructure grant from NSW Health through Hunter Medical Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek R. Laver.

Ethics declarations

Conflict of interest

Derek R. Laver declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by the author.

Additional information

This article is part of a Special Issue on ‘Heart Failure Due to Non-Myofibrillar Defects’ edited by Elisabeth Ehler and Katja Gehmlich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laver, D.R. Regulation of the RyR channel gating by Ca2+ and Mg2+. Biophys Rev 10, 1087–1095 (2018). https://doi.org/10.1007/s12551-018-0433-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-018-0433-4

Keywords

Navigation