Marine Biodiversity

, Volume 49, Issue 1, pp 247–262 | Cite as

Consistent variability in beta-diversity patterns contrasts with changes in alpha-diversity along an onshore to offshore environmental gradient: the case of Red Sea soft-bottom macrobenthos

  • Zahra AlsaffarEmail author
  • João Cúrdia
  • Angel Borja
  • Xabier Irigoien
  • Susana Carvalho
Original Paper


Patterns of variability in diversity (alpha and beta), abundance, and community structure of soft-bottom macrobenthic assemblages were investigated across an inshore/offshore environmental gradient in the central Red Sea. A total of three distinct soft-substrate biotopes were identified through multivariate techniques: seagrass meadows, nearshore, and offshore. While the seagrass biotope was associated with higher organic matter content, the two coastal biotopes presented higher redox potential in the sediments and dissolved oxygen in the water. Depth and medium sand increased toward the offshore, while the percentage of fine particles was a determinant of nearshore communities. Regardless of the prevailing environmental conditions, the three biotopes were characterized by high numbers of exclusive taxa, most of which were singletons. Changes in species richness were not related to depth or organic matter, peaking at intermediate depths (nearshore). However, the number of taxa increased exponentially with abundance. On the other hand, density decreased logarithmically with depth and organic matter in sediments, probably linked to a reduced availability of food. One of the most conspicuous features of the macrobenthic assemblages inhabiting soft substrates in the central oligotrophic Red Sea is the low level of dominance resulting from a high species richness: abundance ratio. Despite the differences observed for alpha-diversity across the three biotopes, beta-diversity patterns were rather consistent. These findings suggest that mechanisms driving biodiversity are similar across the depth gradient. The partitioning of beta-diversity also show that assemblages are mainly driven by the substitution of species (turnover or replacement), most likely as a result of environmental filtering. The heterogeneity of the seafloor in shallow waters of the Red Sea promoted by the co-existence of coral reefs inter-spaced by sedimentary habitats may increase the regional pool of colonizers and potentiate the stochasticity of the distribution patterns.


Macrobenthic assemblages Biotopes Seagrass Coastal area Spatial distribution Tropics 



The authors would like to thank Richard Payumo, Miguel Viegas, and Holger Anlauf for their help in the field and in the laboratory. Also, the authors would like to thank the skippers and staff of the Costal and Marine Resources Core Lab for their invaluable support in fieldwork activities. We are also grateful to Dr. Joanne Ellis and Dr. John Pearman for proofreading this manuscript and for their invaluable comments on an earlier version that helped to improve it. Five anonymous reviewers and the Editor provided constructive comments to the submitted manuscript. This research was supported by baseline funding provided by KAUST to Prof. Xabier Irigoien. S. Carvalho and J. Cúrdia are funded by the Saudi Aramco-KAUST center for Marine Environmental Observations.

Supplementary material

12526_2017_791_MOESM1_ESM.xlsx (20 kb)
ESM 1 (XLSX 19 kb)


  1. Adjeroud M (1997) Factors influencing spatial patterns on coral reefs around Moorea, French Polynesia. Mar Ecol Prog Ser 159:105–119CrossRefGoogle Scholar
  2. Alfaro AC (2006) Benthic macro-invertebrate community composition within a mangrove/seagrass estuary in northern New Zealand. Estuar Coast Shelf Sci 66:97–110CrossRefGoogle Scholar
  3. Al-Farraj S, El-Gendy A, Al Kahtani S, El-Hedeny M (2012) The impact of sewage pollution on polychaetes of al Khumrah, south of Jeddah, Saudi Arabia. Res J Environ Sci 6:77CrossRefGoogle Scholar
  4. André C, Jonsson PR, Lindegarth M (1993) Predation on settling bivalve larvae by benthic suspension feeders: the role of hydrodynamics and larval behaviour. Mar Ecol Prog Ser 97:183–192CrossRefGoogle Scholar
  5. Baldrighi E, Lavaleye M, Aliani S, Conversi A, Manini E (2014) Large spatial scale variability in bathyal macrobenthos abundance, biomass, α- and β-diversity along the Mediterranean continental margin. PLoS One 9:e107261CrossRefPubMedPubMedCentralGoogle Scholar
  6. Barton PS, Cunningham SA, Manning AD, Gibb H, Lindenmayer DB, Didham RK (2013) The spatial scaling of beta diversity. Glob Ecol Biogeogr 22:639–647Google Scholar
  7. Baselga A (2010) Partitioning the turnover and nestedness components of beta diversity. Glob Ecol Biogeogr 19:134–143CrossRefGoogle Scholar
  8. Baselga A (2012) The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Glob Ecol Biogeogr 21:1223–1232CrossRefGoogle Scholar
  9. Baselga A, Leprieur F (2015) Comparing methods to separate components of beta diversity. Methods Ecol Evol 6:1069–1079CrossRefGoogle Scholar
  10. Becking LE, Cleary DFR, de Voogd NJ, Renema W, de Beer M, van Soest RWM, Hoeksema BW (2006) Beta diversity of tropical marine benthic assemblages in the Spermonde Archipelago, Indonesia. Mar Ecol 27:76–88CrossRefGoogle Scholar
  11. Bevilacqua S, Plicanti A, Sandulli R, Terlizzi A (2012) Measuring more of β-diversity: quantifying patterns of variation in assemblage heterogeneity. An insight from marine benthic assemblages. Ecol Indic 18:140–148CrossRefGoogle Scholar
  12. Bolam SG, Eggleton J, Smith R, Mason C, Vanstaen K, Rees H (2008) Spatial distribution of macrofaunal assemblages along the English Channel. J Mar Biol Assoc UK 88:675–687CrossRefGoogle Scholar
  13. Bologna PA, Heck KL (1999) Macrofaunal associations with seagrass epiphytes: relative importance of trophic and structural characteristics. J Exp Mar Biol Ecol 242:21–39CrossRefGoogle Scholar
  14. Borja A, Tunberg BG (2011) Assessing benthic health in stressed subtropical estuaries, eastern Florida, USA using AMBI and M-AMBI. Ecol Indic 11:295–303CrossRefGoogle Scholar
  15. Boström C, O’Brien K, Roos C, Ekebom J (2006) Environmental variables explaining structural and functional diversity of seagrass macrofauna in an archipelago landscape. J Exp Mar Biol Ecol 335:52–73CrossRefGoogle Scholar
  16. Boto KG, Bunt JS (1981) Tidal export of particulate organic matter from a northern Australian mangrove system. Estuar Coast Shelf Sci 13:247–255CrossRefGoogle Scholar
  17. Bouillon S, Koedam N, Raman A, Dehairs F (2002) Primary producers sustaining macro-invertebrate communities in intertidal mangrove forests. Oecologia 130:441–448CrossRefPubMedGoogle Scholar
  18. Bouillon S, Koedam N, Baeyens W, Satyanarayana B, Dehairs F (2004) Selectivity of subtidal benthic invertebrate communities for local microalgal production in an estuarine mangrove ecosystem during the post-monsoon period. J Sea Res 51:133–144CrossRefGoogle Scholar
  19. Boyé A, Legendre P, Grall J, Gauthier O (2017) Constancy despite variability: local and regional macrofaunal diversity in intertidal seagrass beds. J Sea Res.
  20. Cacabelos E, Olabarria C, Incera M, Troncoso JS (2010) Effects of habitat structure and tidal height on epifaunal assemblages associated with macroalgae. Estuar Coast Shelf Sci 89:43–52CrossRefGoogle Scholar
  21. Carvalho S, Barata M, Pereira F, Gaspar MB, Cancela da Fonseca L, Pousão-Ferreira P (2006a) Distribution patterns of macrobenthic species in relation to organic enrichment within aquaculture earthen ponds. Mar Pollut Bull 52:1573–1584CrossRefPubMedGoogle Scholar
  22. Carvalho S, Moura A, Sprung M (2006b) Ecological applications of removing seagrass beds (Zostera noltii) for bivalve aquaculture in southern Portugal. Cah Biol Mar 47:321Google Scholar
  23. Carvalho S, Pereira P, Pereira F, de Pablo H, Vale C, Gaspar MB (2011) Factors structuring temporal and spatial dynamics of macrobenthic communities in a eutrophic coastal lagoon (Óbidos lagoon, Portugal). Mar Environ Res 71:97–110CrossRefPubMedGoogle Scholar
  24. Carvalho S, Cunha MR, Pereira F, Pousão-Ferreira P, Santos MN, Gaspar MB (2012) The effect of depth and sediment type on the spatial distribution of shallow soft-bottom amphipods along the southern Portuguese coast. Helgol Mar Res 66:489–501CrossRefGoogle Scholar
  25. Cerrato RM, Caron DA, Lonsdale DJ, Rose JM, Schaffner RA (2004) Effect of the northern quahog Mercenaria mercenaria on the development of blooms of the brown tide alga Aureococcus anophagefferens. Mar Ecol Prog Ser 281:93–108CrossRefGoogle Scholar
  26. Chan AKY, Xu W-Z, Liu X-S, Cheung SG, Shin PKS (2016) Sediment characteristics and benthic ecological status in contrasting marine environments of subtropical Hong Kong. Mar Pollut Bull 103:360–370CrossRefPubMedGoogle Scholar
  27. Cheung SG, Lam NWY, Wu RSS, Shin PKS (2008) Spatio-temporal changes of marine macrobenthic community in sub-tropical waters upon recovery from eutrophication. II. Life-history traits and feeding guilds of polychaete community. Mar Pollut Bull 56:297–307CrossRefPubMedGoogle Scholar
  28. Cleary DFR, Becking LE, de Voogd NJ, Renema W, de Beer M, van Soest RWM, Hoeksema BW (2005) Variation in the diversity and composition of benthic taxa as a function of distance offshore, depth and exposure in the Spermonde Archipelago, Indonesia. Estuar Coast Shelf Sci 65:557–570CrossRefGoogle Scholar
  29. Coles SL, McCain JC (1990) Environmental factors affecting benthic infaunal communities of the western Arabian Gulf. Mar Environ Res 29:289–315CrossRefGoogle Scholar
  30. Currie DR, Small KJ (2005) Macrobenthic community responses to long-term environmental change in an east Australian sub-tropical estuary. Estuar Coast Shelf Sci 63:315–331CrossRefGoogle Scholar
  31. Davis SE, Childers DL, Day JW, Rudnick DT, Sklar FH (2001) Nutrient dynamics in vegetated and unvegetated areas of a southern Everglades mangrove creek. Estuar Coast Shelf Sci 52:753–768CrossRefGoogle Scholar
  32. De Cáceres M, Legendre P (2009) Associations between species and groups of sites: indices and statistical inference. Ecology 90:3566–3574CrossRefPubMedGoogle Scholar
  33. De Cáceres M, Legendre P, Moretti M (2010) Improving indicator species analysis by combining groups of sites. Oikos 119:1674–1684CrossRefGoogle Scholar
  34. Dias IM, Cúrdia J, Cunha MR, Santos MN, Carvalho S (2015) Temporal variability in epifaunal assemblages associated with temperate gorgonian gardens. Mar Environ Res 112:140–151CrossRefPubMedGoogle Scholar
  35. DiBattista JD, Roberts MB, Bouwmeester J, Bowen BW, Coker DJ, Lozano-Cortés DF, Howard Choat J, Gaither MR, Hobbs JPA, Khalil MT, Kochzius M, Myers RF, Paulay G, Robitzch VSN, Saenz-Agudelo P, Salas E, Sinclair-Taylor TH, Toonen RJ, Westneat MW, Williams ST, Berumen ML (2016) A review of contemporary patterns of endemism for shallow water reef fauna in the Red Sea. J Biogeogr 43:423–439CrossRefGoogle Scholar
  36. Dittmann S (2000) Zonation of benthic communities in a tropical tidal flat of north-east Australia. J Sea Res 43:33–51CrossRefGoogle Scholar
  37. Dolbeth M, Ferreira O, Teixeira H, Marques JC, Dias JA, Pardal MA (2007) Beach morphodynamic impact on a macrobenthic community along a subtidal depth gradient. Mar Ecol Prog Ser 352:113–124CrossRefGoogle Scholar
  38. Dray S, Blanchet G, Borcard D, Clappe S, Guenard G, Jombart T, Larocque G, Legendre P, Madi N, Wagner HH (2017) adespatial: Multivariate Multiscale Spatial Analysis.
  39. Duarte CM, Borum J, Short FT, Walker D (2008) Seagrass ecosystems: their global status and prospects. In: Polunin NVC (ed) Aquatic ecosystems: trends and global prospects. Cambridge University Press, CambridgeGoogle Scholar
  40. Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366Google Scholar
  41. Edwards FJ (1987) Climate and oceanography. In: Edwards AJ, Head SM (eds) Red Sea: key environments. Pergamon Press, Oxford, pp 45–69CrossRefGoogle Scholar
  42. Ellingsen KE (2002) Soft-sediment benthic biodiversity on the continental shelf in relation to environmental variability. Mar Ecol Prog Ser 232:15–27CrossRefGoogle Scholar
  43. Ellis J, Nicholls P, Craggs R, Hofstra D, Hewitt J (2004) Effects of terrigenous sedimentation on mangrove physiology and associated macrobenthic communities. Mar Ecol Prog Ser 270:71–82CrossRefGoogle Scholar
  44. Ellis J, Anlauf H, Kürten S, Lozano-Cortés D, Alsaffar Z, Cúrdia J, Jones B, Carvalho S (2017) Cross shelf benthic biodiversity patterns in the southern Red Sea. Sci Rep 7:437CrossRefPubMedPubMedCentralGoogle Scholar
  45. Feebarani J, Joydas TV, Damodaran R, Borja A (2016) Benthic quality assessment in a naturally- and human-stressed tropical estuary. Ecol Indic 67:380–390CrossRefGoogle Scholar
  46. Gartner A, Lavery PS, McMahon K, Brearley A, Barwick H (2010) Light reductions drive macroinvertebrate changes in Amphibolis griffithii seagrass habitat. Mar Ecol Prog Ser 401:87–100CrossRefGoogle Scholar
  47. Gray JS (2002) Species richness of marine soft sediments. Mar Ecol Prog Ser 244:285–297CrossRefGoogle Scholar
  48. Guinot D (1966) Les espèces comestibles de Crabes dans l’Océan Indien occidental et la Mer Rouge. Mém L’Institute Fondam D’Afrique Noire 77:353–390Google Scholar
  49. Harriott VJ, Smith SDA, Harrison PL (1994) Patterns of coral community structure of subtropical reefs in the Solitary Islands Marine Reserve, Eastern Australia. Mar Ecol Prog Ser 109:67–76CrossRefGoogle Scholar
  50. Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25:101–110CrossRefGoogle Scholar
  51. Herkül K, Kotta J (2009) Effects of eelgrass (Zostera marina) canopy removal and sediment addition on sediment characteristics and benthic communities in the northern Baltic Sea. Mar Ecol 30:74–82CrossRefGoogle Scholar
  52. Holt RD, Keitt TH, Lewis MA, Maurer BA, Taper ML (2005) Theoretical models of species’ borders: single species approaches. Oikos 108:18–27CrossRefGoogle Scholar
  53. Hughes DJ, Lamont PA, Levin LA, Packer M, Feeley K, Gage JD (2009) Macrofaunal communities and sediment structure across the Pakistan margin oxygen minimum zone, north-east Arabian Sea. Deep Sea Res Part II Top Stud Oceanogr 56:434–448CrossRefGoogle Scholar
  54. Hurlbert SH (1971) The nonconcept of species diversity: a critique and alternative parameters. Ecology 52:577–586CrossRefPubMedGoogle Scholar
  55. Johnston EL, Roberts DA (2009) Contaminants reduce the richness and evenness of marine communities: a review and meta-analysis. Environ Pollut 157:1745–1752CrossRefPubMedGoogle Scholar
  56. Jost L (2007) Partitioning diversity into independent alpha and beta components. Ecology 88:2427–2439CrossRefPubMedGoogle Scholar
  57. Joydas TV, Damodaran R (2009) Infaunal macrobenthos along the shelf waters of the west coast of India, Arabian Sea. IJMS 38:191–204Google Scholar
  58. Joydas TV, Qurban MA, Al-Suwailem A, Krishnakumar PK, Nazeer Z, Cali NA (2012) Macrobenthic community structure in the northern Saudi waters of the Gulf, 14 years after the 1991 oil spill. Mar Pollut Bull 64:325–335CrossRefPubMedGoogle Scholar
  59. Karakassis I, Eleftheriou A (1997) The continental shelf of Crete: structure of macrobenthic communities. Mar Ecol Prog Ser 160:185–196CrossRefGoogle Scholar
  60. Khedhri I, Atoui A, Ibrahim M, Afli A, Aleya L (2016) Assessment of surface sediment dynamics and response of benthic macrofauna assemblages in Boughrara Lagoon (SW Mediterranean Sea). Ecol Indic 70:77–88CrossRefGoogle Scholar
  61. Koch EW, Gust G (1999) Water flow in tide- and wave-dominated beds of the seagrass Thalassia testudinum. Mar Ecol Prog Ser 184:63–72CrossRefGoogle Scholar
  62. Koch EW, Ackerman JD, Verduin J, van Keulen M (2007) Fluid dynamics in seagrass ecology—from molecules to ecosystems. In: Larkum AWD, Orth RJ, Duarte CM (eds) Seagrass: biology, ecology and conservation. Springer Netherlands, Dordrecht, pp 193–225Google Scholar
  63. Koleff P, Gaston KJ, Lennon JJ (2003) Measuring beta diversity for presence–absence data. J Animal Ecol 72:367–382CrossRefGoogle Scholar
  64. Labrune C, Grémare A, Amouroux J-M, Sardá R, Gil J, Taboada S (2008) Structure and diversity of shallow soft-bottom benthic macrofauna in the Gulf of Lions (NW Mediterranean). Helgol Mar Res 62:201–214CrossRefGoogle Scholar
  65. Legendre P (2014) Interpreting the replacement and richness difference components of beta diversity. Glob Ecol Biogeogr 23:1324–1334CrossRefGoogle Scholar
  66. Legendre P, De Cáceres M (2013) Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecol Lett 16:951–963CrossRefPubMedGoogle Scholar
  67. Legendre P, Legendre L (2012) Numerical ecology, 3rd English edition. Developments in environmental modelling, vol. 24. Elsevier Science, AmsterdamGoogle Scholar
  68. Loiseau N, Legras G, Kulbicki M, Mérigot B, Harmelin-Vivien M, Mazouni N, Galzin R, Gaertner JC (2017) Multi-component β-diversity approach reveals conservation dilemma between species and functions of coral reef fishes. J Biogeogr 44:537–547CrossRefGoogle Scholar
  69. Loneragan NR, Bunn SE, Kellaway DM (1997) Are mangroves and seagrasses sources of organic carbon for penaeid prawns in a tropical Australian estuary? A multiple stable-isotope study. Mar Biol 130:289–300CrossRefGoogle Scholar
  70. Lu L, Grant J, Barrell J (2008) Macrofaunal spatial patterns in relationship to environmental variables in the Richibucto estuary, New Brunswick, Canada. Estuar Coasts 31:994–1005CrossRefGoogle Scholar
  71. Lubinevsky H, Hyams-Kaphzan O, Almogi-Labin A, Silverman J, Harlavan Y, Crouvi O, Herut B, Kanari M, Tom M (2017) Deep-sea soft bottom infaunal communities of the Levantine Basin (SE Mediterranean) and their shaping factors. Mar Biol 164:36CrossRefGoogle Scholar
  72. Mackie AS, Oliver PG, Darbyshire T, Mortimer K (2005) Shallow marine benthic invertebrates of the Seychelles Plateau: high diversity in a tropical oligotrophic environment. Philos Trans R Soc Lond A Math Phys Eng Sci 363:203–228Google Scholar
  73. Magni P, Draredja B, Melouah K, Como S (2015) Patterns of seasonal variation in lagoonal macrozoobenthic assemblages (Mellah lagoon, Algeria). Mar Environ Res 109:168–176CrossRefPubMedGoogle Scholar
  74. Mair JM, Cunningham SL, Sibaja-Cordero JA, Guzman HM, Arroyo MF, Merino D, Vargas R (2009) Mapping benthic faunal communities in the shallow and deep sediments of Las Perlas Archipelago, Pacific Panama. Mar Pollut Bull 58:375–383CrossRefPubMedGoogle Scholar
  75. Marsh AG, Tenore KR (1990) The role of nutrition in regulating the population dynamics of opportunistic, surface deposit feeders in a mesohaline community. Limnol Oceanogr 35:710–724CrossRefGoogle Scholar
  76. Martinetto P, Iribarne O, Palomo G (2005) Effect of fish predation on intertidal benthic fauna is modified by crab bioturbation. J Exp Mar Biol Ecol 318:71–84CrossRefGoogle Scholar
  77. Matias MG, Chapman MG, Underwood AJ, Connor NE (2012) Increasing density of rare species of intertidal gastropods: tests of competitive ability compared with common species. Mar Ecol Prog Ser 453:107–116CrossRefGoogle Scholar
  78. Navarro-Barranco C, Guerra-García JM (2016) Spatial distribution of crustaceans associated with shallow soft-bottom habitats in a coral reef lagoon. Mar Ecol 37:77–87CrossRefGoogle Scholar
  79. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2017) vegan: Community Ecology Package. Ordination methods, diversity analysis and other functions for community and vegetation ecologists. Version 2.4-3.
  80. Pearman JK, Irigoien X, Carvalho S (2016) Extracellular DNA amplicon sequencing reveals high levels of benthic eukaryotic diversity in the central Red Sea. Mar Genomics 26:29–39CrossRefPubMedGoogle Scholar
  81. Piló D, Pereira F, Carriço A, Cúrdia J, Pereira P, Gaspar MB, Carvalho S (2015) Temporal variability of biodiversity patterns and trophic structure of estuarine macrobenthic assemblages along a gradient of metal contamination. Estuar Coast Shelf Sci 167:286–299CrossRefGoogle Scholar
  82. Polónia ARM, Cleary DFR, de Voogd NJ, Renema W, Hoeksema BW, Martins A, Gomes NCM (2015) Habitat and water quality variables as predictors of community composition in an Indonesian coral reef: a multi-taxon study in the Spermonde Archipelago. Sci Total Environ 537:139–151CrossRefPubMedGoogle Scholar
  83. Price ARG, Medley PAH, McDowall RJ, Dawson-Shepherd AR, Hogarth PJ, Ormond RFG (1987) Aspects of mangal ecology along the Red Sea coast of Saudi Arabia. J Nat Hist 21:449–464CrossRefGoogle Scholar
  84. Pusceddu A, Bianchelli S, Canals M, Sanchez-Vidal A, De Madron XD, Heussner S, Lykousis V, de Stigter H, Trincardi F, Danovaro R (2010) Organic matter in sediments of canyons and open slopes of the Portuguese, Catalan, Southern Adriatic and Cretan Sea margins. Deep Sea Res Part I Oceanogr Res Pap 57:441–457CrossRefGoogle Scholar
  85. Qian H, Ricklefs RE, White PS (2005) Beta diversity of angiosperms in temperate floras of eastern Asia and eastern North America. Ecol Lett 8:15–22CrossRefGoogle Scholar
  86. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  87. Raitsos DE, Pradhan Y, Brewin RJ, Stenchikov G, Hoteit I (2013) Remote sensing the phytoplankton seasonal succession of the Red Sea. PLoS One 8:e64909CrossRefPubMedPubMedCentralGoogle Scholar
  88. Ramey PA, Bodnar E (2008) Selection by a deposit-feeding polychaete, Polygordius jouinae, for sands with relatively high organic content. Limnol Oceanogr 53:1512–1520CrossRefGoogle Scholar
  89. Ravara A, Carvalho S (2017) Nephtyidae (Polychaeta, Phyllodocida) from the Red Sea, with record of a new species. J Mar Biol Assoc UK 97:843–856CrossRefGoogle Scholar
  90. Roberts CM, McClean CJ, Veron JE, Hawkins JP, Allen GR, McAllister DE, Mittermeier CG, Schueler FW, Spalding M, Wells F, Vynne C, Werner TB (2002) Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295:1280–1284CrossRefPubMedGoogle Scholar
  91. Robertson AI (1991) Plant–animal interactions and the structure and function of mangrove forest ecosystems. Austral Ecol 16:433–443CrossRefGoogle Scholar
  92. Rosenberg R (1995) Benthic marine fauna structured by hydrodynamic processes and food availability. Neth J Sea Res 34:303–317CrossRefGoogle Scholar
  93. Roy K, Jablonski D, Valentine JW, Rosenberg G (1998) Marine latitudinal diversity gradients: tests of causal hypotheses. Proc Natl Acad Sci U S A 95:3699–3702CrossRefPubMedPubMedCentralGoogle Scholar
  94. Sabeel RA, Ingels J, Pape E, Vanreusel A (2015) Macrofauna along the Sudanese Red Sea coast: potential effect of mangrove clearance on community and trophic structure. Mar Ecol 36:794–809CrossRefGoogle Scholar
  95. Saunders MI, Leon JX, Callaghan DP, Roelfsema CM, Hamylton S, Brown CTJ, Baldock T, Golshani A, Phinn SR, Lovelock CE, Hoegh-Guldberg O, Woodroffe CD, Mumby PJ (2014) Interdependency of tropical marine ecosystems in response to climate change. Nat Clim Chang 4:724–729CrossRefGoogle Scholar
  96. Schneider FI, Mann KH (1991) Species specific relationships of invertebrates to vegetation in a seagrass bed. II. Experiments on the importance of macrophyte shape, epiphyte cover and predation. J Exp Mar Biol Ecol 145:119–139CrossRefGoogle Scholar
  97. Schreider MJ, Glasby TM, Underwood AJ (2003) Effects of height on the shore and complexity of habitat on abundances of amphipods on rocky shores in new South Wales, Australia. J Exp Mar Biol Ecol 293:57–71CrossRefGoogle Scholar
  98. Semprucci F, Colantoni P, Baldelli G, Sbrocca C, Rocchi M, Balsamo M (2013) Meiofauna associated with coral sediments in the Maldivian subtidal habitats (Indian Ocean). Mar Biodivers 43:189–198CrossRefGoogle Scholar
  99. Shin PK, Thompson GB (1982) Spatial distribution of the infaunal benthos of Hong Kong. Mar Ecol Prog Ser 10:37–47CrossRefGoogle Scholar
  100. Shin PK, Lam NWY, Wu RSS, Qian PY, Cheung SG (2008) Spatio-temporal changes of marine macrobenthic community in sub-tropical waters upon recovery from eutrophication. I. Sediment quality and community structure. Mar Pollut Bull 56:282–296CrossRefPubMedGoogle Scholar
  101. Short F, Carruthers T, Dennison W, Waycott M (2007) Global seagrass distribution and diversity: a bioregional model. J Exp Mar Biol Ecol 350:3–20CrossRefGoogle Scholar
  102. Silva RF, Rosa Filho JS, Souza SR, Souza-Filho PW (2011) Spatial and temporal changes in the structure of soft-bottom benthic communities in an Amazon estuary (Caeté estuary, Brazil). J Coast Res 64:440–444CrossRefGoogle Scholar
  103. Sirota L, Hovel KA (2006) Simulated eelgrass Zostera marina structural complexity: effects of shoot length, shoot density, and surface area on the epifaunal community of San Diego Bay, California, USA. Mar Ecol Prog Ser 326:115–131CrossRefGoogle Scholar
  104. Smith SD, Rule MJ (2001) The effects of dredge-spoil dumping on a shallow water soft-sediment community in the Solitary Islands Marine Park, NSW, Australia. Mar Pollut Bull 42:1040–1048CrossRefPubMedGoogle Scholar
  105. Smith TB, Nemeth RS, Blondeau J, Calnan JM, Kadison E, Herzlieb S (2008) Assessing coral reef health across onshore to offshore stress gradients in the US Virgin Islands. Mar Pollut Bull 56:1983–1991CrossRefPubMedGoogle Scholar
  106. Snelgrove PV, Grassle JF, Grassle JP, Petrecca RF, Stocks KI (2001) The role of colonization in establishing patterns of community composition and diversity in shallow-water sedimentary communities. J Mar Res 59:813–830CrossRefGoogle Scholar
  107. Socolar JB, Gilroy JJ, Kunin WE, Edwards DP (2016) How should beta-diversity inform biodiversity conservation? Trends Ecol Evol 31:67–80CrossRefPubMedGoogle Scholar
  108. Sofianos SS, Johns WE (2002) An oceanic general circulation model (OGCM) investigation of the Red Sea circulation, 1. Exchange between the Red Sea and the Indian Ocean. J Geophys Res Oceans 107:3196CrossRefGoogle Scholar
  109. Soininen J, McDonald R, Hillebrand H (2007) The distance decay of similarity in ecological communities. Ecography 30:3–12CrossRefGoogle Scholar
  110. Sokołowski A, Ziółkowska M, Zgrundo A (2015) Habitat-related patterns of soft-bottom macrofaunal assemblages in a brackish, low-diversity system (southern Baltic Sea). J Sea Res 103:93–102CrossRefGoogle Scholar
  111. Sommer B, Harrison PL, Beger M, Pandolfi JM (2014) Trait-mediated environmental filtering drives assembly at biogeographic transition zones. Ecology 95:1000–1009CrossRefPubMedGoogle Scholar
  112. Steinbauer MJ, Dolos K, Reineking B, Beierkuhnlein C (2012) Current measures for distance decay in similarity of species composition are influenced by study extent and grain size. Glob Ecol Biogeogr 21: 1203–1212Google Scholar
  113. Sullivan MJ, Moncreiff CA (1990) Edaphic algae are an important component of salt marsh food-webs: evidence from multiple stable isotope analyses. Mar Ecol Prog Ser 62:149–159CrossRefGoogle Scholar
  114. Takada Y, Ikeda H, Hirano Y, Saigusa M, Hashimoto K, Abe O, Shibuno T (2014) Assemblages of cryptic animals in coral rubble along an estuarine gradient spanning mangrove, seagrass, and coral reef habitats. Bull Mar Sci 90:723–740CrossRefGoogle Scholar
  115. Teske PR, Wooldridge TH (2004) Affinities of some common estuarine macroinvertebrates to salinity and sediment type: empirical data from Eastern Cape estuaries, South Africa. Afr Zool 39:183–192CrossRefGoogle Scholar
  116. Thiel H, Pfannkuche O, Theeg R, Schriever G (1987) Benthic metabolism and standing stock in the central and northern deep Red Sea. Mar Ecol 8:1–20CrossRefGoogle Scholar
  117. Tuomisto H (2010) A diversity of beta diversities: straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity. Ecography 33:2–22CrossRefGoogle Scholar
  118. Ulrich W, Almeida-Neto M, Gotelli NJ (2009) A consumer’s guide to nestedness analysis. Oikos 118:3–17CrossRefGoogle Scholar
  119. Vonk JA, Stapel J (2008) Regeneration of nitrogen (15N) from seagrass litter in tropical indo-Pacific meadows. Mar Ecol Prog Ser 368:165–175CrossRefGoogle Scholar
  120. Vonk JA, Christianen MJ, Stapel J (2008) Redefining the trophic importance of seagrasses for fauna in tropical indo-Pacific meadows. Estuar Coast Shelf Sci 79:653–660CrossRefGoogle Scholar
  121. Wade BA (1972) A description of a highly diverse soft-bottom community in Kingston Harbour, Jamaica. Mar Biol 13:57–69Google Scholar
  122. Wall CC, Peterson BJ, Gobler CJ (2008) Facilitation of seagrass Zostera marina productivity by suspension-feeding bivalves. Mar Ecol Prog Ser 357:165–174CrossRefGoogle Scholar
  123. Warwick RM, Ruswahyuni (1987) Comparative study of the structure of some tropical and temperate marine soft-bottom macrobenthic communities. Mar Biol 95:641–649CrossRefGoogle Scholar
  124. Waycott M, Duarte CM, Carruthers TJB, Orth RJ, Dennison WC, Olyarnik S, Calladine A, Fourqurean JW, Heck KL, Hughes AR, Kendrick GA, Kenworthy WJ, Short FT, Williams SL (2009) Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc Natl Acad Sci U S A 106:12377–12381CrossRefPubMedPubMedCentralGoogle Scholar
  125. Wehe T, Fiege D (2002) Annotated checklist of the polychaete species of the seas surrounding the Arabian Peninsula: Red Sea, Gulf of Aden, Arabian Sea, Gulf of Oman, Arabian Gulf. Fauna Arab 19:7–238Google Scholar
  126. Whittaker RH (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecol Monogr 30:279–338CrossRefGoogle Scholar
  127. Wilson KA, Heck KL Jr, Able KW (1987) Juvenile blue crab, Callinectes sapidus, survival: an evaluation of eelgrass, Zostera marina, as refuge. Fish Bull 85:53–58Google Scholar
  128. Włodarska-Kowalczuk M, Jankowska E, Kotwicki L, Balazy P (2014) Evidence of season-dependency in vegetation effects on macrofauna in temperate seagrass meadows (Baltic Sea). PLoS One 9:e100788CrossRefPubMedPubMedCentralGoogle Scholar
  129. Worm B, Barbier EB, Beaumont N, Duffy JE, Folke C, Halpern BS, Jackson JBC, Lotze HK, Micheli F, Palumbi SR, Sala E, Selkoe KA, Stachowicz JJ, Watson R (2006) Impacts of biodiversity loss on ocean ecosystem services. Science 314:787–790CrossRefPubMedGoogle Scholar
  130. Zhang Q, Warwick RM, McNeill CL, Widdicombe CE, Sheehan A, Widdicombe S (2015) An unusually large phytoplankton spring bloom drives rapid changes in benthic diversity and ecosystem function. Prog Oceanogr 137:533–545CrossRefGoogle Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC)ThuwalSaudi Arabia
  2. 2.AZTI, Marine Research DivisionPasaiaSpain
  3. 3.IKERBASQUEBasque Foundation for ScienceBilbaoSpain

Personalised recommendations