Skip to main content
Log in

Partial linked-to-order delayed payment and life time effects on decaying items ordering

  • Original paper
  • Published:
Operational Research Aims and scope Submit manuscript

Abstract

Trade-credit is an influential implementation in financial transactions. This paper proposes an inventory model for decaying items with lifetime under linked-to-order partial delay in payments. More precisely, the items are gradually deteriorating and also have a known maximum lifetime. The payment scheme is structured as follows: if the order quantity reaches a particular level, fully permissible trade credit is possible, otherwise the partial trade credit is offered. To the best of our knowledge, this is the first research incorporating the “Linked-to-order Trade Credit Financing” scheme for deteriorating items with lifetime. Selling price and purchasing costs are not considered equal and there is no need for the interest charged in stocks to be larger than the interest earned on investment. Theoretical results are developed to obtain the optimum solutions of the problem. The authenticity and pertinence of the model and solution procedure are illustrated through numerical results. Finally, sensitivity analysis and managerial insights are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aggarwal SP, Jaggi CK (1995) Ordering policies of deteriorating items under permissible delay in payments. J Oper Res Soc 46:658–662

    Article  Google Scholar 

  • Annadurai K, Uthayakumar R (2015) Decaying inventory model with stock-dependent demand and shortages under two-level trade credit. Int J Adv Manuf Technol 77:525–543

    Article  Google Scholar 

  • Banu A, Mondal SK (2018) Analyzing an inventory model with two-level trade credit period including the effect of customers’ credit on the demand function using q-fuzzy number. Oper Res 1–29

  • Cárdenas-Barrón LE, Treviño-Garza G (2014) An optimal solution to a three echelon supply chain network with multi-product and multi-period. Appl Math Model 38:1911–1918

    Article  Google Scholar 

  • Chang CT (2004) An EOQ model with deteriorating items under inflation when supplier credits linked to order quantity. Int J Prod Econ 88:307–316

    Article  Google Scholar 

  • Chang CT, Ouyang LY, Teng JT (2003) An EOQ model for deteriorating items under supplier credits linked to ordering quantity. Appl Math Model 27:983–996

    Article  Google Scholar 

  • Chen SC, Teng JT, Skouri K (2013) Economic production quantity models for deteriorating items with up-stream full trade credit and down-stream partial trade credit. Int J Prod Econ 155:302–309

    Article  Google Scholar 

  • Chung KJ, Huang TS (2007) The optimal retailer’s ordering policies for deteriorating items with limited storage capacity under trade credit financing. Int J Prod Econ 106:127–145

    Article  Google Scholar 

  • Chung KJ, Lin SD, Srivastava HM (2013) The inventory models under conditional trade credit in a supply chain system. Appl Math Model 37:10036–10052

    Article  Google Scholar 

  • Das BC, Das B, Mondal SK (2013) Integrated supply chain model for a deteriorating item with procurement cost dependant credit period. Comput Ind Eng 64:788–796

    Article  Google Scholar 

  • Dye CY, Yang CT (2015) Sustainable trade credit and replenishment decisions with credit-linked demand under carbon emission constraints. Eur J Oper Res 244:187–200

    Article  Google Scholar 

  • Giri BC, Sharma S (2016) Optimal ordering policy for an inventory system with linearly increasing demand and allowable shortages under two levels trade credit financing. Oper Res Int J 16:25–50

    Article  Google Scholar 

  • Goyal SK (1985) Economic order quantity under conditions of permissible delay in payments. J Oper Res Soc 35:335–338

    Article  Google Scholar 

  • Huang YF (2007) Economic order quantity under conditionally permissible delay in payments. Eur J Oper Res 176:911–924

    Article  Google Scholar 

  • Huang YF, Hsu KH (2008) An EOQ model under retailer partial trade credit policy in supply chain. Int J Prod Econ 112:655–664

    Article  Google Scholar 

  • Jaggi CK, Aggarwal KK, Goel SK (2007) Retailer’s optimal ordering policy under two stage TCF. Adv Model Optim 9:67–80

    Google Scholar 

  • Jaggi CK, Cárdenas-Barrón LE, Tiwari S, Shafi AA (2017) Two-warehouse inventory model for deteriorating items with imperfect quality under the conditions of permissible delay in payments. Sci Iran Trans E Ind Eng 24:390

    Google Scholar 

  • Khouja M, Mehrez A (1996) Optimal inventory policy under different supplier credit policies. J Manuf Syst 15:334–339

    Article  Google Scholar 

  • Liao JJ (2008) An EOQ model with non-instantaneous receipt and exponentially deteriorating items under two-level trade credit. Int J Prod Econ 113:852–861

    Article  Google Scholar 

  • Liao JJ, Chung KJ, Huang KN (2013) A deterministic inventory model for deteriorating items with two warehouses and trade credit in a supply chain system. Int J Prod Econ 146:557–565

    Article  Google Scholar 

  • Mishra U, Tijerina-Aguilera J, Tiwari S, Cárdenas-Barrón LE (2018) Retailer’s joint ordering, pricing, and preservation technology investment policies for a deteriorating item under permissible delay in payments. Math Probl Eng 2018:6962417

    Article  Google Scholar 

  • Ouyang LY, Ho CH, Su CH (2008) Optimal strategy for an integrated system with variable production rate when the freight rate and trade credit are both linked to the order quantity. Int J Prod Econ 115:151–162

    Article  Google Scholar 

  • Ouyang LY, Teng JT, Goyal SK, Yang CT (2009) An economic order quantity model for deteriorating items with partially permissible delay in payments linked to order quantity. Eur J Oper Res 194(2):418–431

    Article  Google Scholar 

  • Seifert D, Seifert RW, Protopappa-Sieke M (2013) A review of trade credit literature: opportunities for research in operations. Eur J Oper Res 231:245–256

    Article  Google Scholar 

  • Shah NH (2015) Retailer’s replenishment and credit policies for deteriorating inventory under credit period-dependent demand and bad-debt loss. TOP 23(1):298–312

    Article  Google Scholar 

  • Shah NH, Cárdenas-Barrón LE (2015) Retailer’s decision for ordering and credit policies for deteriorating items when a supplier offers order-linked credit period or cash discount. Appl Math Comput 259:569–578

    Google Scholar 

  • Shaikh AA, Bhunia AK, Cárdenas-Barrón LE, Sahoo L, Tiwari S (2018) A fuzzy inventory model for a deteriorating item with variable demand, permissible delay in payments and partial backlogging with Shortage Follows Inventory (SFI) Policy. Int J Fuzzy Syst 20:1606–1623

    Article  Google Scholar 

  • Taleizadeh AA, Noori-Daryan M (2015) Pricing, manufacturing and inventory policies for raw material in a three-level supply chain. Int J Syst Sci 47(4):919–931

    Article  Google Scholar 

  • Taleizadeh AA, Wee HM, Jolai F (2013) Revisiting fuzzy rough economic order quantity model for deteriorating items considering quantity discount and prepayment. Math Comput Model 57(5–6):1466–1479

    Article  Google Scholar 

  • Taleizadeh AA, Kalantary SS, Cárdenas-Barrón LE (2015) Determining optimal price, replenishment lot size and number of shipment for an EPQ model with rework and multiple shipments. J Ind Manag Optim 11(4):1059–1071

    Google Scholar 

  • Tat R, Taleizadeh AA, Esmaeili M (2015) Developing EOQ model with non-instantaneous deteriorating items in vendor-managed inventory (VMI) system. Int J Syst Sci 46(7):1257–1268

    Article  Google Scholar 

  • Teng JT, Lou KR, Wang L (2014) Optimal trade credit and lot size policies in economic production quantity models with learning curve production costs. Int J Prod Econ 155:318–323

    Article  Google Scholar 

  • Tiwari S, Cárdenas-Barrón LE, Goh M, Shaikh AA (2018) Joint pricing and inventory model for deteriorating items with expiration dates and partial backlogging under two-level partial trade credits in supply chain. Int J Prod Econ 200:16–36

    Article  Google Scholar 

  • Tsao YC (2010) Two-phase pricing and inventory management for deteriorating and fashion goods under trade credit. Math Methods Oper Res 72:107–127

    Article  Google Scholar 

  • Wang WC, Teng JT, Lou KR (2014) Seller’s optimal credit period and cycle time in a supply chain for deteriorating items with maximum lifetime. Eur J Oper Res 232:315–321

    Article  Google Scholar 

  • Wu J, Chan YL (2014) Lot-sizing policies for deteriorating items with expiration dates and partial trade credit to credit-risk customers. Int J Prod Econ 155:292–301

    Article  Google Scholar 

  • Wu J, Ouyang LY, Cárdenas-Barrón LE, Goyal SK (2014) Optimal credit period and lot size for deteriorating items with expiration dates under two-level trade credit financing. Eur J Oper Res 237:898–908

    Article  Google Scholar 

  • Zhang Q, Dong M, Luo J, Segerstedt A (2014) Supply chain coordination with trade credit and quantity discount incorporating default risk. Int J Prod Econ 152:352–360

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Konstantaras.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

In order to prove Lemma 1 set

$$\begin{aligned} F_{1} (T) & = - A - hD\left[ {\frac{{(1 + G)^{2} }}{2}\ln \left( {\frac{1 + G}{1 + G - T}} \right) + \frac{{T^{2} }}{4} - \frac{(1 + G)T}{2}} \right] \\& \quad+ \frac{{I_{e} PDM^{2} }}{2} + hDT\left[ {\frac{{(1 + G)^{2} }}{2(1 + G - T)} + \frac{T}{2} - \frac{1 + G}{2}} \right] \\ & \quad + CDT\left( {\frac{1 + G}{1 + G - T}} \right) - CD(1 + G)\ln \left( {\frac{1 + G}{1 + G - T}} \right) + I_{k} CDT\left[ {\frac{{(1 + G - M)^{2} }}{2(1 + G - T)} + \frac{T + M}{2}} \right] \\ & \quad - I_{k} CD\left[ {\frac{{(1 + G - M)^{2} }}{2}\ln \left( {\frac{1 + G - M}{1 + G - T}} \right) + \frac{{T^{2} - M^{2} }}{4} + \frac{M(T + M) + M}{2}} \right] \\ \end{aligned}$$
(26)

\(\frac{{dF_{1} (T)}}{dT}\) with respect to \(T \in [M,\infty )\) yields:

$$\begin{aligned} \frac{{dF_{1} (T)}}{dT}& = hDT\left[ {\frac{{(1 + G)^{2} }}{{2(1 + G - T)^{2} }} + \frac{1}{2}} \right] + CD\frac{1 + G}{{(1 + G - T)^{2} }}\,\,\\&\quad + I_{k} CDT\left[ {\frac{{(1 + G - M)^{2} }}{{2(1 + G - T)^{2} }} + \frac{1}{2}} \right]\, > 0 \end{aligned}$$
(27)

Therefore,\(F_{1} (T)\) is strictly increasing function of \(T \in [M,\infty )\). From Eq. (26), \(F_{1} (M) = \Delta_{1}\) and \(\mathop {\lim }\nolimits_{T \to \infty } F_{1} (T) = \infty\). Thereafter, by using the Intermediate Value Theorem, we could claim that there exist a unique value of \(T \in [M,\infty )\), say \(T_{1}\), such that \(F_{1} (T_{1} ) = 0\). Furthermore:

$$\frac{{d^{2} TRC_{1} (T)}}{{dT^{2} }}\mathop |\limits_{{T = T_{1} }} = \frac{D}{{T_{1} }}\left\{ {\frac{{(h + C)(1 + G)^{2} }}{{2(1 + G - T_{1} )}} + \frac{h}{2} + I_{k} C\left[ {\frac{{(1 + G - M)^{2} }}{{2(1 + G - T_{1} )^{2} }} + \frac{1}{2}} \right]\,\,} \right\} > 0\,$$
(28)

Then, apparently \(T_{1} \in [M,\infty )\) is a unique optimal value for \(TRC_{1} (T)\). If \(\Delta_{1} > 0\), then for all \(T \in [M,\infty ),F_{1} (T) > 0\) and \(\frac{{dTRC_{1} (T)}}{dT} = \frac{{F_{1} (T)}}{{T^{2} }} > 0\). Consequently, \(TRC_{1} (T)\) is a strictly increasing function of T in the interval \(T \in [M,\infty )\). So, in this case, \(TRC_{1} (T)\) has an optimal solution at \(T = M\) and this completes the proof.

Appendix 2

In order to prove Lemma 3 set;

$$\begin{aligned} F_{3} (T) & = - A - hD\left[ {\frac{{(1 + G)^{2} }}{2}\ln \left( {\frac{1 + G}{1 + G - T}} \right) + \frac{{T^{2} }}{4} - \frac{(1 + G)T}{2}} \right] \\& \quad + hDT\left[ {\frac{{(1 + G)^{2} }}{2(1 + G - T)} + \frac{T}{2} - \frac{1 + G}{2}} \right] - CD(1 + G)\ln \left( {\frac{1 + G}{1 + G - T}} \right) \\ & \quad + CDT\left( {\frac{1 + G}{1 + G - T}} \right) + \frac{{I_{e} PDT^{2} }}{2} - I_{k} CD(1 + G)^{2} \left\{ { - \frac{1}{2}\ln \left( {\frac{1 + G}{1 + G - T}} \right)}\right.\\& \quad \times \left.{\left[ {\alpha \left( {\frac{1 + G}{1 + G - T}} \right)^{2(\alpha - 1)} } \right] + \frac{1}{4}\left[ {\left( {\frac{1 + G}{1 + G - T}} \right)^{2(\alpha - 1)} - 1} \right]} \right\} \\ & \quad + I_{k} CD(1 + G)^{2} T\left\{ { - \frac{\alpha }{2}\frac{{(1 + G)^{{^{2(\alpha - 1)} }} }}{{(1 + G - T)^{{^{2\alpha - 1} }} }} - \frac{\alpha - 1}{2}\frac{{(1 + G)^{{^{2(\alpha - 1)} }} }}{{(1 + G - T)^{{^{2\alpha - 1} }} }} }\right.\\&\quad \left.{- \alpha (\alpha - 1)\ln \left( {\frac{1 + G}{1 + G - T}} \right)\frac{{(1 + G)^{{^{2(\alpha - 1)} }} }}{{(1 + G - T)^{{^{2\alpha - 1} }} }} + \frac{1}{2(1 + G - T)}} \right\} \\ & \quad + I_{k} CD\alpha (1 + G)^{2} \left\{ {\ln \left( {\frac{1 + G}{1 + G - T}} \right)\left[ {1 - \left( {\frac{1 + G}{1 + G - T}} \right)^{\alpha - 1} } \right]} \right\} \\ & \quad - I_{k} CD\alpha (1 + G)^{2} T\left\{ { - \frac{{(1 + G)^{{^{\alpha - 1} }} }}{{(1 + G - T)^{\alpha } }} }\right.\\&\quad \left.{- \frac{{\alpha - 1(1 + G)^{{^{2(\alpha - 1)} }} }}{{2(1 + G - T)^{{^{2\alpha - 1} }} }} - (\alpha - 1)\ln \left( {\frac{1 + G}{1 + G - T}} \right)\frac{{(1 + G)^{{^{\alpha - 1} }} }}{{(1 + G - T)^{\alpha } }} + \frac{1}{(1 + G - T)}} \right\} \\ \end{aligned}$$
(29)

\(\frac{{dF_{3} (T)}}{dT}\) with respect to \(T \in (0,T_{w} )\), yields:

$$\begin{aligned} \frac{{dF_{3} (T)}}{dT}& = hDT\left[ {\frac{{(1 + G)^{2} }}{{2(1 + G - T)^{2} }} + \frac{1}{2}} \right] + \frac{CD(1 + G)}{{(1 + G - T)^{2} }}\, + I_{e} PD \\& \quad + \,I_{k} CD(1 + G)^{2} T\left\{ {\frac{1}{{2(1 + G - T)^{2} }}\left[ {1 - (\frac{1 + G}{1 + G - T})^{2\alpha - 1} \frac{(\alpha - 1)(2\alpha - 1)}{1 + G}} \right]} \right\} \end{aligned}$$
(30)

Since \(\alpha < 1\) we have:

$$1 - \left( {\frac{1 + G}{1 + G - T}} \right)^{2\alpha - 1} \frac{(\alpha - 1)(2\alpha - 1)}{1 + G} > 1 - \frac{(\alpha - 1)(2\alpha - 1)}{1 + G - T}$$
(31)

As mentioned in assumptions, \(\theta (t) = \frac{1}{1 + G - t}\) for \(t \in [0,T]\) and since \(\theta (t) < 1\) we have \(\theta (T) = \frac{1}{1 + G - T} < 1\), then \(\frac{(\alpha - 1)(2\alpha - 1)}{1 + G - T} < 1\) and consequently \(1 - \frac{(\alpha - 1)(2\alpha - 1)}{1 + G - T} > 0\) which gives \(\frac{{dF_{3} (T)}}{dT} > 0\). Therefore, \(F_{3} (T)\) is a strictly increasing function of T in the interval \((0,T_{w} )\). From Eq. (29) we know that \(\mathop {\lim }\nolimits_{{T \to T_{w}^{ - } }} F_{3} (T) = \Delta_{3}\) and \(\mathop {\lim }\nolimits_{T \to \infty } F_{1} (T) < 0\). Thus if \(\mathop {\lim }\nolimits_{{T \to T_{w}^{ - } }} F_{3} (T) = \Delta_{3} > 0\), by using the Intermediate Value Theorem, there is a unique \(T_{3} \in (0,T_{w} )\) which gives \(F_{3} (T) = 0\). Moreover, taking the second derivative of \(TRC_{3} (T)\) with respect to T at the point \(T_{3}\) yields:

$$\begin{aligned} \frac{{d^{2} TRC_{3} (T)}}{{dT^{2} }}\mathop |\limits_{{T_{3} }} &= \frac{D}{{T_{3} }}\left\{ {\frac{{(h + C)(1 + G)^{2} }}{{2(1 + G - T_{3} )}} + \frac{h}{2} + I_{e} P + I_{k} C(1 + G)^{2} }\right.\\&\quad \times\left.{\left\{ {\frac{1}{{2(1 + G - T_{3} )^{2} }}\left[ {1 - \left( {\frac{1 + G}{{1 + G - T_{3} }}} \right)^{2\alpha - 1} \frac{(\alpha - 1)(2\alpha - 1)}{1 + G}} \right]} \right\}} \right\} > 0 \end{aligned}$$
(32)

Therefore, \(T_{3} \in (0,T_{w} )\) is the unique optimal solution for \(TRC_{3} (T)\). However, if \(\mathop {\lim }\nolimits_{{T \to T_{w}^{ - } }} F_{3} (T) = \Delta_{3} < 0\), then for all \(T \in (0,T_{w} )\), we have \(F_{3} (T) < 0\). As a result for all \(T \in (0,T_{w} )\) also \(\frac{{dTRC_{3} (T)}}{dT} = \frac{{F_{3} (T)}}{{T^{2} }} < 0\). Then we can claim that \(TRC_{3} (T)\) is a strictly decreasing function of T in the interval \((0,T_{w} )\). Subsequently, there is no T in the open interval \((0,T_{w} )\) under which \(TRC_{3} (T)\) is minimized and this completes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taleizadeh, A.A., Pourmohammad-Zia, N. & Konstantaras, I. Partial linked-to-order delayed payment and life time effects on decaying items ordering. Oper Res Int J 21, 2077–2099 (2021). https://doi.org/10.1007/s12351-019-00501-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12351-019-00501-4

Keywords

Mathematics Subject Classification

Navigation