Skip to main content

Advertisement

Log in

Klotho, BDNF, NGF, GDNF Levels and Related Factors in Withdrawal Period in Chronic Cannabinoid Users

  • Original Research Article
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Klotho and neurotropic factors have recently been shown to be related to some psychiatric disorders and neurocognitive disorders, but there is no study on this issue within substance users. In this study, brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), glial derived neurotrophic factor (GDNF) and klotho serum levels of a patient group consisting of 27 chronic cannabis users according to the DSM-V and 27 healthy volunteers were compared, and their relationships with other the clinical features of other patients were evaluated. Clinical scales, the Buss–Perry Aggression Scale, and the Substance Craving Scale were repeated on the first day of hospitalisation and on the seventh day of withdrawal. BDNF, GDNF, NGF and klotho levels were analysed using the ELISA method. There was no differences between the cannabinoid use disorder group and the control group regarding their klotho and other neurotrophic levels, but initiation age of cannabis use was negatively correlated with these levels. In addition, there was a relationship between verbal aggression scores and BDNF and NGF levels. There was a positive correlation between klotho and neurotrophic factors in all groups (patient group Day 1, patient group Day 7, control group) (p < 0.01). When comparing the difference between the correlations using the cocor (a comprehensive solution for the statistical comparison of correlations), the klotho–GDNF and klotho–NGF correlations for the first day of the patient group and the control group were different. In this study, rather than a difference in klotho levels and neurotropic factors, a significant relationship between these markers and each other and clinical parameters was demonstrated; further studies are needed to understand the exact mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available because of privacy or ethical restrictions.

Code Availability

All authors declare that all data and materials, as well as software applications or custom code, support their published claims and comply with field standards.

References

  1. Yazici AB, Yazici E, Akkisi Kumsar N, Erol A. Addiction profile in probation practices in Turkey: 5-year data analysis. Neuropsychiatr Dis Treat. 2015;11:2259–63. https://doi.org/10.2147/ndt.s89417.

    Article  PubMed  PubMed Central  Google Scholar 

  2. World Health Organization. World Drug Report 2019 (United Nations publication, Sales No. E.19.XI.8). 2019. https://wdr.unodc.org/wdr2019/prelaunch/WDR19_Booklet_2_DRUG_DEMAND.pdf. Accessed 21 Apr 2019

  3. Degenhardt L, Ferrari AJ, Calabria B, Hall WD, Norman RE, McGrath J, et al. The global epidemiology and contribution of cannabis use and dependence to the global burden of disease: results from the GBD 2010 study. PLoS ONE. 2013;8(10):e76635. https://doi.org/10.1371/journal.pone.0076635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Grigg J, Manning V, Arunogiri S, Lubman DI. Synthetic cannabinoid use disorder: an update for general psychiatrists. Australas Psychiatry. 2019;27(3):279–83. https://doi.org/10.1177/1039856218822749.

    Article  PubMed  Google Scholar 

  5. Winstock AR, Barratt MJ. Synthetic cannabis: a comparison of patterns of use and effect profile with natural cannabis in a large global sample. Drug Alcohol Depend. 2013;131(1–2):106–11. https://doi.org/10.1016/j.drugalcdep.2012.12.011.

    Article  CAS  PubMed  Google Scholar 

  6. European Monitoring Center for Drugs and Drug Addiction (EMCDDA). European Drug Report 2018. Trends and developments. Luxembourg: Office For Official Publications of The European Communities; 2018. p. 2018.

    Google Scholar 

  7. Broyd SJ, van Hell HH, Beale C, Yucel M, Solowij N. Acute and chronic effects of cannabinoids on human cognition-a systematic review. Biol Psychiatry. 2016;79(7):557–67. https://doi.org/10.1016/j.biopsych.2015.12.002.

    Article  CAS  PubMed  Google Scholar 

  8. Cohen K, Kapitany-Foveny M, Mama Y, Arieli M, Rosca P, Demetrovics Z, et al. The effects of synthetic cannabinoids on executive function. Psychopharmacology. 2017;234(7):1121–34. https://doi.org/10.1007/s00213-017-4546-4.

    Article  CAS  PubMed  Google Scholar 

  9. American Psychiatric Association (APA). The diagnostic and statistical manual of mental disorders. 5th ed. Washington, DC, USA: American Psychiatric Association; 2013.

    Book  Google Scholar 

  10. Bonnet U, Preuss UW. The cannabis withdrawal syndrome: current insights. Subst Abuse Rehabilit. 2017;8:9–37. https://doi.org/10.2147/SAR.S109576.

    Article  Google Scholar 

  11. Burggren AC, Shirazi A, Ginder N, London ED. Cannabis effects on brain structure, function, and cognition: considerations for medical uses of cannabis and its derivatives. Am J Drug Alcohol Abuse. 2019;45(6):563–79. https://doi.org/10.1080/00952990.2019.1634086.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Numakawa T, Odaka H, Adachi N. Actions of brain-derived neurotrophin factor in the neurogenesis and neuronal function, and its involvement in the pathophysiology of brain diseases. Int J Mol Sci. 2018. https://doi.org/10.3390/ijms19113650.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gibon J, Barker PA. Neurotrophins and proneurotrophins: focus on synaptic activity and plasticity in the brain. Neuroscientist. 2017;23(6):587–604. https://doi.org/10.1177/1073858417697037.

    Article  CAS  PubMed  Google Scholar 

  14. Ibanez CF, Andressoo JO. Biology of GDNF and its receptors—relevance for disorders of the central nervous system. Neurobiol Dis. 2017;97(Pt B):80–9. https://doi.org/10.1016/j.nbd.2016.01.021.

    Article  CAS  PubMed  Google Scholar 

  15. Vo HT, Laszczyk AM, King GD. Klotho, the key to healthy brain aging? Brain Plast. 2018;3(2):183–94. https://doi.org/10.3233/BPL-170057.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Allen SJ, Watson JJ, Shoemark DK, Barua NU, Patel NK. GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Ther. 2013;138(2):155–75. https://doi.org/10.1016/j.pharmthera.2013.01.004.

    Article  CAS  PubMed  Google Scholar 

  17. Hennigan A, O’Callaghan RM, Kelly AM. Neurotrophins and their receptors: roles in plasticity, neurodegeneration and neuroprotection. Biochem Soc Trans. 2007;35(Pt 2):424–7.

    Article  CAS  PubMed  Google Scholar 

  18. Lu B. BDNF and activity-dependent synaptic modulation. Learning & Memory. 2003.

  19. Salles FHM, Soares PSM, Wiener CD, Mondin TC, da Silva PM, Jansen K, et al. Mental disorders, functional impairment, and nerve growth factor. Psychol Res Behav Manag. 2016;10:9–15. https://doi.org/10.2147/PRBM.S104814.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Park Y-M, Lee B-H. Alterations in serum BDNF and GDNF levels after 12 weeks of antidepressant treatment in female outpatients with major depressive disorder. Psychiatry Investig. 2018;15(8):818–23. https://doi.org/10.30773/pi.2018.03.31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997;390(6655):45–51. https://doi.org/10.1038/36285.

    Article  CAS  PubMed  Google Scholar 

  22. Kuro-o M. Klotho and betaKlotho. Adv Exp Med Biol. 2012;728:25–40. https://doi.org/10.1007/978-1-4614-0887-1_2.

    Article  CAS  PubMed  Google Scholar 

  23. Kimura T, Shiizaki K, Akimoto T, Shinzato T, Shimizu T, Kurosawa A, et al. The impact of preserved Klotho gene expression on antioxidative stress activity in healthy kidney. Am J Physiology-Renal Physiol. 2018;315(2):F345–52.

    Article  CAS  Google Scholar 

  24. Nagai T, Yamada K, Kim HC, Kim YS, Noda Y, Imura A, et al. Cognition impairment in the genetic model of aging klotho gene mutant mice: a role of oxidative stress. FASEB J. 2003;17(1):50–2. https://doi.org/10.1096/fj.02-0448fje.

    Article  CAS  PubMed  Google Scholar 

  25. Yazici E, Mutu Pek T, Guzel D, Yazici AB, Akcay Ciner O, Erol A. Klotho, vitamin D and homocysteine levels during acute episode and remission periods in schizophrenia patients. Nord J Psychiatry. 2019;73(3):178–84.

    Article  PubMed  Google Scholar 

  26. Ferreira FF, Ribeiro FF, Rodrigues RS, Sebastião AM, Xapelli S. Brain-derived neurotrophic factor (BDNF) role in cannabinoid-mediated neurogenesis. Front Cell Neurosci. 2018;12:441. https://doi.org/10.3389/fncel.2018.00441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. D’Souza DC, Pittman B, Perry E, Simen A. Preliminary evidence of cannabinoid effects on brain-derived neurotrophic factor (BDNF) levels in humans. Psychopharmacology. 2009;202(4):569–78. https://doi.org/10.1007/s00213-008-1333-2.

    Article  CAS  PubMed  Google Scholar 

  28. Lisano JK, Kisiolek JN, Smoak P, Phillips KT, Stewart LK. Chronic cannabis use and circulating biomarkers of neural health, stress, and inflammation in physically active individuals. Appl Physiol Nutr Metab. 2020;45(3):258–63. https://doi.org/10.1139/apnm-2019-0300.

    Article  CAS  PubMed  Google Scholar 

  29. Ogel K, Evren C, Karadag F, Gurol T. The development, validity, and reliability of the addiction profile index (API). Türk Psikiyatri Dergisi. 2012;23(4):264–73.

    Google Scholar 

  30. Evren C, Gürol D, Ögel K. Reliability and validity of the Penn alcohol craving scale (PACS) revised version for substance craving in male substance dependent inpatients. Turk Psikiyatri Derg. 2011;22(Suppl 1):70.

    Google Scholar 

  31. Buss AH, Perry M. The aggression questionnaire. J Pers Soc Psychol. 1992;63(3):452–9.

    Article  CAS  PubMed  Google Scholar 

  32. Demirtaş Madran HA. Buss-Perry Saldirganlik Ölçeği’nin Türkçe Formunun Geçerlik ve Güvenilirlik Çalişmasi= The reliability and validity of the Buss-Perry Aggression Questionnaire (BAQ)-Turkish Version. Türk Psikiyatri Dergisi. 2013;24(2):124–9.

    PubMed  Google Scholar 

  33. Diedenhofen B, Musch J. Cocor: a comprehensive solution for the statistical comparison of correlations. PloS ONE. 2015;10(3):e0121945. https://doi.org/10.1371/journal.pone.0121945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cheng HG, Shidhaye R, Charlson F, Deng F, Lyngdoh T, Chen S, et al. Social correlates of mental, neurological, and substance use disorders in China and India: a review. Lancet Psychiatry. 2016;3(9):882–99. https://doi.org/10.1016/s2215-0366(16)30166-3.

    Article  PubMed  Google Scholar 

  35. Maynard KR, Hill JL, Calcaterra NE, Palko ME, Kardian A, Paredes D, et al. Functional role of BDNF production from unique promoters in aggression and serotonin signaling. Neuropsychopharmacology. 2016;41(8):1943–55. https://doi.org/10.1038/npp.2015.349.

    Article  CAS  PubMed  Google Scholar 

  36. Ilchibaeva TV, Tsybko AS, Kozhemyakina RV, Kondaurova EM, Popova NK, Naumenko VS. Genetically defined fear-induced aggression: focus on BDNF and its receptors. Behav Brain Res. 2018;343:102–10. https://doi.org/10.1016/j.bbr.2018.01.034.

    Article  CAS  PubMed  Google Scholar 

  37. Berry A, Bindocci E, Alleva E. NGF, brain and behavioral plasticity. Neural Plasticity. 2012;2012:784040. https://doi.org/10.1155/2012/784040.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ahmadi K, Javadinia SA, Saadat SH, Ramezani MA, Sedghijalal H. Triangular relationship among risky sexual behavior, addiction, and aggression: a systematic review. Electron Physician. 2017;9(8):5129–37. https://doi.org/10.19082/5129.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Progovac L, Benítez-Burraco A. From physical aggression to verbal behavior: language evolution and self-domestication feedback loop. Front Psychol. 2019. https://doi.org/10.3389/fpsyg.2019.02807.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Miguez MJ, Chan W, Espinoza L, Tarter R, Perez C. Marijuana use among adolescents is associated with deleterious alterations in mature BDNF. AIMS Public Health. 2019;6(1):4–14. https://doi.org/10.3934/publichealth.2019.1.4.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Toll A, Bergé D, Burling K, Scoriels L, Treen D, Monserrat C, et al. Cannabis use influence on peripheral brain-derived neurotrophic factor levels in antipsychotic-naïve first-episode psychosis. Eur Arch Psychiatry Clin Neurosci. 2020. https://doi.org/10.1007/s00406-020-01117-y.

    Article  PubMed  Google Scholar 

  42. Buchanan S, Combet E, Stenvinkel P, Shiels PG. Klotho, aging, and the failing kidney. Front Endocrinol. 2020. https://doi.org/10.3389/fendo.2020.00560.

    Article  Google Scholar 

  43. Rocha NP, Teixeira AL. Neurotrophic factors in aging. In: Pachana NA, editor. Encyclopedia of geropsychology. Singapore: Springer; 2017. p. 1628–38.

    Chapter  Google Scholar 

  44. Shi L, Lou W, Wong A, Zhang F, Abrigo J, Chu WC, et al. Neural evidence for long-term marriage shaping the functional brain network organization between couples. Neuroimage. 2019;199:87–92. https://doi.org/10.1016/j.neuroimage.2019.05.058.

    Article  PubMed  Google Scholar 

  45. Lang F, Ma K, Leibrock CB. 1,25(OH)(2)D(3) in brain function and neuropsychiatric disease. Neurosignals. 2019;27(1):40–9. https://doi.org/10.33594/000000182.

    Article  PubMed  Google Scholar 

  46. Sopjani M, Dërmaku-Sopjani M. Klotho-dependent cellular transport regulation. Vitam Horm. 2016;101:59–84. https://doi.org/10.1016/bs.vh.2016.02.003.

    Article  CAS  PubMed  Google Scholar 

  47. Kwon S-M, Kim S-A, Yoon J-H, Yook J-I, Ahn S-G. Global analysis of gene expression profiles in the submandibular salivary gland of klotho knockout mice. J Cell Physiol. 2018;233(4):3282–94. https://doi.org/10.1002/jcp.26172.

    Article  CAS  PubMed  Google Scholar 

  48. Eyles D, Brown J, Mackay-Sim A, McGrath J, Feron F. Vitamin D3 and brain development. Neuroscience. 2003;118(3):641–53. https://doi.org/10.1016/s0306-4522(03)00040-x.

    Article  CAS  PubMed  Google Scholar 

  49. Faye PA, Poumeaud F, Miressi F, Lia AS, Demiot C, Magy L, et al. Focus on 1,25-Dihydroxyvitamin D3 in the peripheral nervous system. Front Neurosci. 2019;13:348. https://doi.org/10.3389/fnins.2019.00348.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Farquhar-Smith WP, Jaggar SI, Rice AS. Attenuation of nerve growth factor-induced visceral hyperalgesia via cannabinoid CB(1) and CB(2)-like receptors. Pain. 2002;97(1–2):11–21. https://doi.org/10.1016/s0304-3959(01)00419-5.

    Article  CAS  PubMed  Google Scholar 

  51. Melck D, De Petrocellis L, Orlando P, Bisogno T, Laezza C, Bifulco M, et al. Suppression of nerve growth factor Trk receptors and prolactin receptors by endocannabinoids leads to inhibition of human breast and prostate cancer cell proliferation. Endocrinology. 2000;141(1):118–26. https://doi.org/10.1210/endo.141.1.7239.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We want to say thank you to “Sakarya University Sciantific Research Unit” for their support to our Laboratuary.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esra Yazici.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Ethical Approval

Ethical approval was obtained from the local ethics committee (No. 71522473/050.01.04/21).

Informed Consent

Informed consent was obtained from all participants in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yazici, A.B., Guzel, D., Kurt, E.M. et al. Klotho, BDNF, NGF, GDNF Levels and Related Factors in Withdrawal Period in Chronic Cannabinoid Users. Ind J Clin Biochem 37, 139–148 (2022). https://doi.org/10.1007/s12291-021-00959-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-021-00959-0

Keywords

Navigation