Skip to main content
Log in

Association of Type II 5′ Monodeiodinase Thr92Ala Single Nucleotide Gene Polymorphism and Circulating Thyroid Hormones Among Type 2 Diabetes Mellitus Patients

  • Original Article
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Diabetes mellitus and thyroid disorders are common endocrinopathies, which often occur parallel. Dyslipidemia is very common in both of these conditions. The development of hypothyroidism is well-known in type 1 diabetics, but it was not distinctly understood in type 2 diabetics. Thus we tried to examine the association between type II deiodinase (D2 or DIO2) Thr92Ala single nucleotide gene polymorphism and thyroid function among type 2 diabetes mellitus patients. A total of 130 type 2 diabetics were screened and genotyped for DIO2 Thr92Ala polymorphism. Fasting plasma glucose, Glycosylated haemoglobin, lipid and thyroid profiles, malondialdehyde (MDA) and paraoxonase were estimated according to standard procedures. A significant altered level of thyroid hormones (TH’s) was found in Ala/Ala genotype when compared with Thr/Thr or Thr/Ala genotype. DIO2 and T3:T4 ratio significantly decreased, whereas total T4 and thyroid stimulating hormone levels significantly elevated among Ala/Ala genotype (131 ± 30 ng/ml; 0.12 ± 0.05; 7.17 ± 2.05 µg/dl; 4.77 ± 3.1 µIU/ml, respectively) when compared with Thr/Thr + Thr/Ala genotypes (176 ± 33 ng/ml; 0.21 ± 0.05; 5.21 ± 1.1 µg/dl; 2.59 ± 1.61 µIU/ml respectively). Moreover, D2 levels were significantly negatively correlated with TH’s levels except total T4 among Ala/Ala genotypes. All the patients were having a poor glycemic control, and their glycemic status was positively correlating with MDA levels. On the other hand, serum paraoxonase activity decreased among Ala/Ala genotype (104 ± 21 vs. 118 ± 18 nmol/min/ml). In conclusion, DIO2 Ala92 homozygous variant found to be associated with altered levels of DIO2, Thyroid profile and paraoxonase. Hence, we recommend to do detail study of genetic factors related to thyroid function and prevent additional diabetic complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Duntas LH. Thyroid disease and lipids. Thyroid. 2002;12:287–93.

    Article  CAS  PubMed  Google Scholar 

  2. Polikar R, Burger AG, Scherrer U, Nicod P. The thyroid and the heart. Circulation. 1993;87(5):1435–41.

    Article  CAS  PubMed  Google Scholar 

  3. Braverman LE, Ingbar SH, Sterling K. Conversion of T4 to T3 in athyreotic subjects. J Clin Invest. 1970;49:855–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Antonio C, Salvatore D, Gereben B, Berry MJ, Larsen PR. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr Rev. 2002;23(1):38–89.

    Article  Google Scholar 

  5. Collins FS, Brooks LD, Chakravarti A. A DNA polymorphism discovery resource for research on human genetic variabtion. Genome Res. 1998;8:1229–31.

    CAS  PubMed  Google Scholar 

  6. Brookes AJ. The essence of SNP’s. Gene. 1999;234:177–86.

    Article  CAS  PubMed  Google Scholar 

  7. Dora AJ, Machado WE, Rheinheimer J, Crispim D, Maia AL. Association of the type 2 deiodinase Thr92Ala polymorphism with type 2 diabetes: case–control study and meta-analysis. Eur J Endocrinol. 2010;163:427–34.

    Article  CAS  PubMed  Google Scholar 

  8. Canani LH, Capp C, Dora JM, Meyer EL, Wagner MS, Harney JW, et al. The type 2 deiodinase A/G (Thr92Ala) polymorphism is associated with decreased enzyme velocity and increased insulin resistance in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2005;90:3472–8.

    Article  CAS  PubMed  Google Scholar 

  9. Meulenbelt I, Min JL, Bos S, Riyazi N, Houwing-Duistermaat JJ, Van Der Wijk HJ, et al. Identification of DIO2 as a new susceptibility locus for symptomatic osteoarthritis. Hum Mol Genet. 2008;17:1867–75.

    Article  CAS  PubMed  Google Scholar 

  10. Gumieniak O, Perlstein TS, Williams JS, Hopkins PN, Brown NJ, Raby BA, et al. Ala92 type 2 deiodinase allele increases risk for the development of hypertension. Hypertension. 2007;49:461–6.

    Article  CAS  PubMed  Google Scholar 

  11. Chistiakov DA, Savost’anov KV, Turakulov RI. Screening of SNPs at 18 positional candidate genes, located within the GD-1 locus on chromosome 14q23–q32, for susceptibility to Graves’ disease: a TDT study. Mol Genet Metab. 2004;83:264–70.

    Article  CAS  PubMed  Google Scholar 

  12. Guo TW, Zhang FC, Yang MS, Gao XC, Bian L, Duan SW, et al. Positive association of the DIO2 (deiodinase type 2) gene with mental retardation in the iodine-deficient areas of China. J Med Genet. 2004;41:585–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Panicker V, Saravanan P, Vaidya B, Evans J, Hattersley AT, Frayling TM, et al. Common variation in the DIO2 gene predicts baseline psychological well-being and response to combination thyroxine plus triiodothyronine therapy in hypothyroid patients. J Clin Endocrinol Metab. 2009;94:1623–9.

    Article  CAS  PubMed  Google Scholar 

  14. Heemstra KA, Hoftijzer H, Van Der Deure WM, Peeters RP, Hamdy NA, Pereira A, et al. The type 2 deiodinase Thr92Ala polymorphism is associated with increased bone turn-over and decreased femoral neck bone mineral density. J Bone Miner Res. 2010;25:1385–91.

    Article  CAS  PubMed  Google Scholar 

  15. Kilic SS, Aydin S, Kilic N, Erman F, Aydin S, Celik I. Serum arylesterase and paraoxonase activity in patients with chronic hepatitis. World J Gastroenterol. 2005;11:7351–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Draper HH, Hadley M. Maondialdehyde determination as index of lipid peroxidation. Methods Enzymol. 1990;186:421–31.

    Article  CAS  PubMed  Google Scholar 

  17. Shu Y. Steve humphries and fiona green. Allele specific amplification by tetra-primer PCR. Nucleic Acids Research. 1992;20, No. 5.

  18. Loeb JN. Metabolic changes in hypothyroidism. In: Braverman LE, Utiger RD, editors. Werner and ingbar’s the thyroid. 7th ed. Philadelphia: Lippincott-Raven; 1996. p. 858–63.

    Google Scholar 

  19. Dittmar M, Kahaly GJ. Polyglandular autoimmune syndromes: immunogenetics and long-term follow-up. J Clin Endocrinol Metab. 2003;88:2983–9.

    Article  CAS  PubMed  Google Scholar 

  20. Uzunlulu M, Yorulmaz E, Oguz A. Prevalence of subclinical hypothyroidism in patients with metabolic syndrome. Endocr J. 2007;54:71–6.

    Article  CAS  PubMed  Google Scholar 

  21. Williams GR, Duncan Bassett JH. Local control of thyroid hormone action: role of type 2 deiodinase. J Endocrinol. 2011;209:261–72.

    Article  CAS  PubMed  Google Scholar 

  22. Schneider MJ, Fiering SN, Pallud SE, Parlow AF, St Germain DL, Galton VA. Targeted disruption of the type 2 selenodeiodinase gene (DIO2) results in a phenotype of pituitary resistance to T4. Mol Endocrinol. 2001;15:2137–48.

    Article  CAS  PubMed  Google Scholar 

  23. Christoffolete MA, Arrojo e Drigo R, Gazoni F, Tente SM, Goncalves V, Amorim BS, et al. Mice with impaired extrathyroidal thyroxine to 3,5,30-triiodothyronine conversion maintain normal serum 3,5,30-triiodothyronine concentrations. Endocrinology. 2007;148:954–60.

    Article  CAS  PubMed  Google Scholar 

  24. Galton VA, Wood ET, St Germain EA, Withrow CA, Aldrich G, St Germain GM, et al. Thyroid hormone homeostasis and action in the type 2 deiodinase-deficient rodent brain during development. Endocrinology. 2007;148:3080–8.

    Article  CAS  PubMed  Google Scholar 

  25. Tan KCB, Shiu SWM, Kung AWC. “Effect of thyroid dysfunction on high-density lipoprotein subfraction metabolism: roles of hepatic lipase and cholesteryl ester transfer protein 1. J Clin Endocrinol Metab. 1998;83(8):2921–4.

    CAS  PubMed  Google Scholar 

  26. Butler PW, et al. The Thr92Ala 5′ Type 2 deiodinase gene polymorphism is associated with a delayed triiodothyronine secretion in response to the thyrotropin-releasing hormone–stimulation test: a pharmacogenomic study. Thyroid. 2010;20(12):1407–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Torlontano M, Durante C, Torrente I, Crocetti U, Augello G, Ronga G, et al. Type 2 deiodinase polymorphism (threonine 92 alanine) predicts L-thyroxine dose to achieve target thyrotropin levels in thyroidectomized patients. J Clin Endocrinol Metab. 2008;93:910–3.

    Article  CAS  PubMed  Google Scholar 

  28. Heemstra KA, Hoftijzer HC, van der Deure WM, Peeters RP, Fliers E, Appelhof BC, et al. Thr92Ala polymorphism in the type 2 deiodinase is not associated with T4 dose in athyroid patients or patients with Hashimoto thyroiditis. Clin Endocrinol. 2009;71:279–83.

    Article  CAS  Google Scholar 

  29. Brownlee M, Cerami A, Vlassara H. Advanced glycation end products in tissue and biochemical bassi of diabetic complication. N Engl J Med. 1988;318:1315–22.

    Article  CAS  PubMed  Google Scholar 

  30. Alridge WN. A-esterase and B-esterase in perspective. In: Reiner E, Alridge WN, Hoskin FCG, editors. Enzymes hydrolyzing organophosphorous compounds. Chichester: Elis Horwood Ltd; 1989. p. 1–14.

    Google Scholar 

  31. Gonzalvo MC, Gil F, Hernandez AF. Human liver paraoxonase (PON1) sub-cellular distribution and characterization. J Biochem Mol Toxicol. 1998;12:61–9.

    Article  CAS  PubMed  Google Scholar 

  32. McElveen J, Mackness MI, Colley CM, Peard T, Warner S, Walker CH. Distribution of paraoxon hydrolytic activity in the serum of patients after myocardial infarction. Clin Chem. 1986;32:671–3.

    CAS  PubMed  Google Scholar 

  33. Mackness MI, Harty D, Bhatnagar D, Winocour PH, Arrol S, Ishola M, et al. Serum paraoxonase activity in familial hypercholesterolaemia and insulin-dependent diabetes mellitus. Atherosclerosis. 1991;86:193–9.

    Article  CAS  PubMed  Google Scholar 

  34. Dhanunjaya Y, Vijaya D, Dolia PB. Decreased basal activity of HDL associated enzyme: Paraoxonase (PON) during uncompensated oxidative stress among type 2 diabetes mellitus patients. Int J Diabetes Dev Ctries. 2014;13:1–8.

    Google Scholar 

Download references

Funding

This study does not have any financial support and it is purely self funded research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhanunjaya Yalakanti.

Ethics declarations

Conflict of interest

All authors involved in this work have declared that ‘There is no conflict of interest’.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Research involving human participants and/or animals

All procedures performed in this study involving human participants were in accordance with the ethical standards of the institutional ethics committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Ethics committee certificate No. 18062011, Madras Medical College, Chennai-3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yalakanti, D., Dolia, P.B. Association of Type II 5′ Monodeiodinase Thr92Ala Single Nucleotide Gene Polymorphism and Circulating Thyroid Hormones Among Type 2 Diabetes Mellitus Patients. Ind J Clin Biochem 31, 152–161 (2016). https://doi.org/10.1007/s12291-015-0518-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-015-0518-9

Keywords

Navigation