Skip to main content
Log in

Regularity of a \(\overline{\partial }\)-Solution Operator for Strongly \(\mathbf{C}\)-Linearly Convex Domains with Minimal Smoothness

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We prove regularity of solutions of the \(\bar{\partial }\)-problem in the Hölder–Zygmund spaces of bounded, strongly \(\mathbf{C}\)-linearly convex domains of class \(C^{1,1}\). The proofs rely on a new analytic characterization of said domains which is of independent interest, and on techniques that were recently developed by the first-named author to prove estimates for the \(\bar{\partial }\)-problem on strongly pseudoconvex domains of class \(C^2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Sometime simply referred to as “weakly linearly convex”.

  2. While the notions of “strong” and “strict” convexity (resp., “strong” and “strict” \(\mathbf{C}\)-linear convexity) are distinct from one another, there is no distinction between “strong” and “strict” pseudoconvexity and the two terms are often interchanged. See [13, p. 261].

References

  1. Andersson, M., Passare, M., Sigurdsson, R., Sigurdsson, R.: Complex Convexity and Analytic Functionals. Progress in Mathematics. Birkhäuser, Basel (2004). MR2060426

    Book  Google Scholar 

  2. Behnke, H., Peschl, E.: Zur Theorie der Funktionen mehrerer komplexer Veränderlichen. Math. Ann. 111(1), 158–177 (1935). MR1512986

    Article  MathSciNet  Google Scholar 

  3. Chen, S.-C., Shaw, M.-C.: Partial Differential Equations in Several Complex Variables. AMS/IP Studies in Advanced Mathematics, American Mathematical Society. International Press, Boston (2001). MR1800297

    Book  Google Scholar 

  4. Dufresnoy, A.: Sur l’opérateur \(d^{\prime \prime }\) et les fonctions différentiables au sens de Whitney. Ann. Inst. Fourier 29(1), 229–238 (1979). MR0526786

    Article  MathSciNet  Google Scholar 

  5. Glaeser, G.: Étude de quelques algèbres tayloriennes. J. Anal. Math. 6, 1–124 (1958). Erratum, insert to 6 (1958), no. 2, MR0101294

    Article  Google Scholar 

  6. Gong, X.: Hölder estimates for homotopy operators on strictly pseudoconvex domains with \(C^2\) boundary. Math. Ann. 374(1–2), 841–880 (2019). MR3961327

    Article  MathSciNet  Google Scholar 

  7. Grauert, H., Lieb, I.: Das Ramirezsche Integral und die Lösung der Gleichung \(\bar{\partial }f=\alpha \) im Bereich der beschränkten Formen. Rice Univ. Stud. 56(2) (1970), 29–50 (1971). MR0273057

  8. Harrington, P.S.: Sobolev estimates for the Cauchy–Riemann complex on \(C^1\) pseudoconvex domains. Math. Z. 262(1), 199–217 (2009). MR2491606

    Article  MathSciNet  Google Scholar 

  9. Henkin, G.M.: Integral representation of functions which are holomorphic in strictly pseudoconvex regions, and some applications. Mat. Sb. 78(120), 611–632 (1969). MR0249660

    MathSciNet  Google Scholar 

  10. Henkin, G.M., Leiterer, J.: Theory of Functions on Complex Manifolds. Monographs in Mathematics. Birkhäuser, Basel (1984). MR774049

    Google Scholar 

  11. Henkin, G.M., Romanov, A.V.: Exact Hölder estimates of the solutions of the \(\bar{\delta }\)-equation. Izv. Akad. Nauk SSSR Ser. Mat. 35, 1171–1183 (1971). MR0293121

    MathSciNet  Google Scholar 

  12. Kerzman, N.: Hölder and \(L^{p}\) estimates for solutions of \(\bar{\partial }u=f\) in strongly pseudoconvex domains. Commun. Pure Appl. Math. 24, 301–379 (1971). MR0281944

    Article  MathSciNet  Google Scholar 

  13. Lanzani, L., Stein, E.M.: Cauchy-type integrals in several complex variables. Bull. Math. Sci. 3(2), 241–285 (2013). MR3084008

    Article  MathSciNet  Google Scholar 

  14. Lanzani, L., Stein, E.M.: The Cauchy integral in \({C}^n\) for domains with minimal smoothness. Adv. Math. 264, 776–830 (2014). MR3250300

    Article  MathSciNet  Google Scholar 

  15. Lanzani, L., Stein, E.M.: The Cauchy–Leray integral: counter-examples to the \(L^p\)-theory. Indiana U. Math. J. 68(5), 1609–1621 (2019). MR4030479

    Article  Google Scholar 

  16. Lieb, I., Range, R.M.: Lösungsoperatoren für den Cauchy-Riemann-Komplex mit \({\cal{C}}^{k}\)-Abschätzungen. Math. Ann. 253(2), 145–164 (1980). MR597825

    Article  MathSciNet  Google Scholar 

  17. Michel, J.: Integral representations on weakly pseudoconvex domains. Math. Z. 208(3), 437–462 (1991). MR1134587

    Article  MathSciNet  Google Scholar 

  18. Michel, J., Shaw, M.-C.: A decomposition problem on weakly pseudoconvex domains. Math. Z. 230(1), 1–19 (1999). MR1671846

    Article  MathSciNet  Google Scholar 

  19. Peters, K.: Solution operators for the \(\overline{\partial }\)-equation on nontransversal intersections of strictly pseudoconvex domains. Math. Ann. 291(4), 617–641 (1991). MR1135535

    Article  MathSciNet  Google Scholar 

  20. Range, R.M.: Holomorphic Functions and Integral Representations in Several Complex Variables. Graduate Texts in Mathematics. Springer, New York (1986). MR847923

    Book  Google Scholar 

  21. Range, R.M., Siu, Y.-T.: Uniform estimates for the \(\bar{\partial }\)-equation on domains with piecewise smooth strictly pseudoconvex boundaries. Math. Ann. 206, 325–354 (1973). MR0338450

    Article  MathSciNet  Google Scholar 

  22. Shi, Z.: Weighted sobolev \({L}^p\) estimates for homotopy operators on strictly pseudoconvex domains with \({C}^2\) boundary. ArXiv e-prints, (2019), eprint arXiv:1907.00264

  23. Siu, Y.-T.: The \(\bar{\partial }\) problem with uniform bounds on derivatives. Math. Ann. 207, 163–176 (1974). MR330515

    Article  MathSciNet  Google Scholar 

  24. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, vol. 30. Princeton University Press, Princeton (1970). MR0290095

    MATH  Google Scholar 

Download references

Acknowledgements

Part of this work was carried out while the second-named author was in residence at the Isaac Newton Institute for Mathematical Sciences during the program Complex Analysis: techniques, applications and computations (EPSRC Grant No. EP/R04604/1). We thank the Institute, and the program organizers, for the generous support and hospitality. Finally, we are grateful to the referee for making several suggestions that have greatly improved the exposition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianghong Gong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Partially supported by a grant from the Simons Foundation (Award No.: 505027).

Partially supported by the National Science Foundation (DMS 1504589; DMS-1901978) and an INI-Simons fellowship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, X., Lanzani, L. Regularity of a \(\overline{\partial }\)-Solution Operator for Strongly \(\mathbf{C}\)-Linearly Convex Domains with Minimal Smoothness. J Geom Anal 31, 6796–6818 (2021). https://doi.org/10.1007/s12220-020-00443-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-020-00443-w

Keywords

Mathematics Subject Classification

Navigation