Skip to main content
Log in

Configuration Sets with Nonempty Interior

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

A theorem of Steinhaus states that if \(E\subset \mathbb {R}^d\) has positive Lebesgue measure, then the difference set \(E-E\) contains a neighborhood of 0. Similarly, if E merely has Hausdorff dimension \(\hbox {dim}_{{\mathcal {H}}}(E)>(d+1)/2,\) a result of Mattila and Sjölin states that the distance set \(\varDelta (E)\subset \mathbb {R}\) contains an open interval. In this work, we study such results from a general viewpoint, replacing \(E-E\) or \(\varDelta (E)\) with more general \(\varPhi \)-configurations for a class of \(\varPhi :\mathbb {R}^d\times \mathbb {R}^d\rightarrow \mathbb {R}^k,\) and showing that, under suitable lower bounds on \(\hbox {dim}_{{\mathcal {H}}}(E)\) and a regularity assumption on the family of generalized Radon transforms associated with \(\varPhi ,\) it follows that the set \(\varDelta _\varPhi (E)\) of \(\varPhi \)-configurations in E has nonempty interior in \(\mathbb {R}^k\). Further extensions hold for \(\varPhi \)-configurations generated by two sets, E and F,  in spaces of possibly different dimensions and with suitable lower bounds on \(\hbox {dim}_{{\mathcal {H}}}(E)+\hbox {dim}_{{\mathcal {H}}}(F).\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In applications, one can easily localize away from singularities of \(\varPhi \) at degenerate configurations (at \(x=y\) for this \(\varPhi \)).

  2. We refer to the monographs of Mattila [25, 26] for background definitions and results.

References

  1. Adams, J., Lax, P., Phillips, R.: On matrices whose real linear combinations are nonsingular. Proc. Am. Math. Soc. 16, 318–322 (1965)

    MATH  Google Scholar 

  2. Bennett, M., Iosevich, A., Taylor, K.: Finite chains inside thin subsets of \({\mathbb{R}}^d\). Anal. PDE 9(3), 597–614 (2016)

  3. Birklbauer, P.: Ph.D. Thesis, University of Rochester (2019)

  4. Birklbauer, P., Iosevich, A., Pham, T.: Distances from points to planes. Acta Arith. 186(3), 219–224 (2018)

    Article  MathSciNet  Google Scholar 

  5. Chan, V., Łaba, I., Pramanik, M.: Finite configurations in sparse sets. J. d’Anal. Math. 128, 289–335 (2016)

    Article  MathSciNet  Google Scholar 

  6. Du, X., Guth, L., Ou, Y., Wang, H., Wilson, B., Zhang, R.: Weighted restriction estimates and application to Falconer distance set problem. arXiv:1802.10186 (2018)

  7. Erdoğan, B.: A bilinear Fourier extension theorem and applications to the distance set problem. Int. Math. Res. Not. 23, 1411–1425 (2005)

    Article  MathSciNet  Google Scholar 

  8. Falconer, K.J.: On the Hausdorff dimensions of distance sets. Mathematika 32, 206–212 (1986)

    Article  MathSciNet  Google Scholar 

  9. Fraser, R., Guo, S., Pramanik, M.: Polynomial Roth theorems on sets of fractional dimensions. arXiv:1904.1123 (2019)

  10. Grafakos, L., Greenleaf, A., Iosevich, A., Palsson, E.: Multilinear generalized Radon transforms and point configurations. Forum Math. 27(4), 2323–2360 (2015)

    Article  MathSciNet  Google Scholar 

  11. Greenleaf, A., Seeger, A.: Fourier integral operators with fold singularities. J. Reine Angew. Math. 455, 35–56 (1994)

    MathSciNet  MATH  Google Scholar 

  12. Guillemin, V., Sternberg, S.: Geometric Asymptotics. Mathematical Surveys, vol. 14. American Mathematical Society, Providence (1977)

  13. Greenleaf, A., Iosevich, A., Pramanik, M.: On necklaces inside thin subsets of \({\mathbb{R}}^d\). Math. Res. Lett. 24(2), 347–362 (2017)

  14. Guillemin, V., Sternberg, S.: Some problems in integral geometry and some related problems in microlocal analysis. Am. J. Math. 101(4), 915–955 (1979)

    Article  MathSciNet  Google Scholar 

  15. Guth, L., Iosevich, A., Ou, Y., Wang, H.: On Falconer distance set problem in the plane. Invent. math. arXiv:1808.09346 (to appear)

  16. Helgason, S.: The Radon transform on Euclidean spaces, compact two-point homogeneous spaces and Grassmann manifolds. Acta Math. 113, 153–180 (1965)

    Article  MathSciNet  Google Scholar 

  17. Henriot, K., Łaba, I., Pramanik, M.: On polynomial configurations in fractal sets. Anal. PDE 9(5), 1153–1184 (2016)

    Article  MathSciNet  Google Scholar 

  18. Hörmander, L.: Fourier integral operators. I. Acta Math. 127(1–2), 79–183 (1971)

    Article  MathSciNet  Google Scholar 

  19. Hörmander, L.: The Analysis of Linear Partial Differential Operators, III and IV. Grund. math. Wissen., vols. 274 and 275. Springer, Berlin (1985)

  20. Iosevich, A., Liu, B.: Pinned distance problem, slicing measures, and local smoothing estimates. Trans. Am. Math. Soc. 371(6), 4459–4474 (2019)

    Article  MathSciNet  Google Scholar 

  21. Iosevich, A., Taylor, K.: Finite trees inside thin subsets of \({\mathbb{R}}^d\). arXiv:1903.02662 (2019)

  22. Iosevich, A., Mourgoglou, M., Taylor, K.: On the Mattila–Sjölin theorem for distance sets. Ann. Acad. Sci. Fenn. Math. 37(2), 557–562 (2012)

    Article  MathSciNet  Google Scholar 

  23. Iosevich, A., Janczak, M., Passant, J.: A multi-parameter variant of the Erdös distance problem. arXiv:1712.04060 (2017)

  24. Krause, B.: A non-linear Roth Theorem for fractals of sufficiently large dimension. arXiv:1904.10562 (2019)

  25. Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability. Cambridge Studies in Advanced Mathematics, vol. 44. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  26. Mattila, P.: Fourier Analysis and Hausdorff Dimension. Cambridge Studies in Advanced Mathematics, vol. 150. Cambridge University Press, Cambridge (2015)

    Book  Google Scholar 

  27. Mattila, P., Sjölin, P.: Regularity of distance measures and sets. Math. Nachr. 204, 157–162 (1999)

    Article  MathSciNet  Google Scholar 

  28. Melrose, R., Taylor, M.: Near peak scattering and the corrected Kirchhoff approximation for a convex obstacle. Adv. Math. 55, 242–315 (1985)

    Article  MathSciNet  Google Scholar 

  29. Mockenhaupt, G., Seeger, A., Sogge, C.: Wave front sets, local smoothing and Bourgain’s circular maximal theorem. Ann. Math. (2) 136(1), 207–218 (1992)

    Article  MathSciNet  Google Scholar 

  30. Müller, D., Seeger, A.: Singular spherical maximal operators on a class of two step nilpotent Lie groups. Isr. J. Math. 141, 315–340 (2004)

    Article  MathSciNet  Google Scholar 

  31. Nevo, A., Thangavelu, S.: Pointwise ergodic theorems for radial averages on the Heisenberg group. Adv. Math. 127(2), 307–334 (1997)

    Article  MathSciNet  Google Scholar 

  32. Pham, T., Phuong, N.D., Sang, N.M., Valculescu, C., Vinh, L.A.: Distinct distances between points and lines in \({\mathbb{F}}^2_q \). Forum Math. 30(4), 799–808 (2018)

    Article  MathSciNet  Google Scholar 

  33. Phong, D.H., Stein, E.M.: Hilbert integrals, singular integrals, and Radon transforms. I. Acta Math. 157(1–2), 99–157 (1986)

    Article  MathSciNet  Google Scholar 

  34. Phuong, N.D., Pham, T., Vinh, L.A.: Incidences between planes over finite fields. Proc. Am. Math. Soc. 147(5), 2185–2196 (2019)

    Article  MathSciNet  Google Scholar 

  35. Simon, K., Taylor, K.: Interior of sums of planar sets and curves. arXiv:1707.01420 (2017)

  36. Sogge, C.: Fourier Integrals in Classical Analysis. Cambridge Tracts in Mathematics, vol. 105. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  37. Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  38. Steinhaus, H.: Sur les distances des points dans les ensembles de mesure positive. Fundam. Math. 1, 93–104 (1920)

    Article  Google Scholar 

  39. Tsujishita, T.: Spherical means on Riemannian manifolds. Osaka J. Math. 13(3), 591–597 (1976)

    MathSciNet  MATH  Google Scholar 

  40. Vinh, L.A.: On point-line incidences in vector spaces over finite fields. Discrete Appl. Math. 177, 146–151 (2014)

    Article  MathSciNet  Google Scholar 

  41. Wolff, T.: Decay of circular means of Fourier transforms of measures. Int. Math. Res. Not. 10, 547–567 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan Greenleaf.

Additional information

Dedicated to the memory of Eli Stein, who inspired by his scholarship, teaching and friendship.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greenleaf, A., Iosevich, A. & Taylor, K. Configuration Sets with Nonempty Interior. J Geom Anal 31, 6662–6680 (2021). https://doi.org/10.1007/s12220-019-00288-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-019-00288-y

Keywords

Mathematics Subject Classification

Navigation