Skip to main content
Log in

Quasimode, Eigenfunction and Spectral Projection Bounds for Schrödinger Operators on Manifolds with Critically Singular Potentials

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We obtain quasimode, eigenfunction and spectral projection bounds for Schrödinger operators, \(H_V=-\Delta _g+V(x)\), on compact Riemannian manifolds (Mg) of dimension \(n\ge 2\), which extend the results of the third author (Sogge 1988) corresponding to the case where \(V\equiv 0\). We are able to handle critically singular potentials and consequently assume that \(V\in L^{\tfrac{n}{2}}(M)\) and/or \(V\in {{\mathcal {K}}}(M)\) (the Kato class). Our techniques involve combining arguments for proving quasimode/resolvent estimates for the case where \(V\equiv 0\) that go back to the third author (Sogge 1988) as well as ones which arose in the work of Kenig et al. (1987) in the study of “uniform Sobolev estimates” in \({{\mathbb {R}}}^n\). We also use techniques from more recent developments of several authors concerning variations on the latter theme in the setting of compact manifolds. Using the spectral projection bounds we can prove a number of natural \(L^p\rightarrow L^p\) spectral multiplier theorems under the assumption that \(V\in L^{\frac{n}{2}}(M)\cap {{\mathcal {K}}}(M)\). Moreover, we can also obtain natural analogs of the original Strichartz estimates (1977) for solutions of \((\partial _t^2-\Delta +V)u=0\). We also are able to obtain analogous results in \({{\mathbb {R}}}^n\) and state some global problems that seem related to works on absence of embedded eigenvalues for Schrödinger operators in \({{\mathbb {R}}}^n\) (e.g., Ionescu and Jerison 2003; Jerison and Kenig 1985; Kenig and Nadirashvili 2000; Koch and Tataru 2002; Rodnianski and Schlag 2004).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Simon [38, § A.3] raises an analogous problem for \(L^p\) bounds for eigenfunctions of Schrödinger operators in \({{\mathbb {R}}}^n\) but says that the “class of potentials \(\ldots \) includes none of physical interest.” This is due to the fact that the associated operators \(H_V\) need not be essentially self-adjoint if one weakens the hypotheses in Corollary 1.4.

  2. Recall that a form core for \(q_V\) is a subspace S which approximates elements u in the domain of the form in that there exists a sequence \(u_m \in S\) satisfying \(\lim _m \Vert u-u_m\Vert ^2 + q_V(u-u_m,u-u_m) = 0\).

  3. To see this we note that by (2.2), if N is large enough the t-integral is dominated by \(h_n(d_g(x,y))\). Thus, as \(V\in {{\mathcal {K}}}(M)\), we just need to see that if the y-integral is taken over the region where \(\{y\in M: \, d_g(x,y)>\delta \}\), with \(\delta >0\) fixed, then the resulting expression is small. Since this also follows easily from (2.2) our claim follows.

  4. Strictly speaking, Remling’s work considers constant coefficient Laplacians rather than the Laplace–Beltrami operator considered here, but the arguments extend to our setting by standard energy estimates for the wave equation.

  5. This follows from [38, Theorem B.2.1].

References

  1. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, Inc., New York (1992) (Reprint of the 1972 edn)

  2. Aizenman, M., Simon, B.: Brownian motion and Harnack inequality for Schrödinger operators. Commun. Pure Appl. Math. 35(2), 209–273 (1982)

    MATH  Google Scholar 

  3. Alexopoulos, G.K.: Spectral multipliers for Markov chains. J. Math. Soc. Jpn. 56(3), 833–852 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Bérard, P.H.: On the wave equation on a compact Riemannian manifold without conjugate points. Math. Z. 155(3), 249–276 (1977)

    MathSciNet  MATH  Google Scholar 

  5. Blair, M., Sogge, C.D.: Logarithmic improvements in \(L^{p}\) bounds for eigenfunctions at the critical exponent in the presence of nonpositive curvature. Invent. Math. 217(2), 703–748 (2019)

  6. Blair, M.D., Sogge, C.D.: Concerning Toponogov’s theorem and logarithmic improvement of estimates of eigenfunctions. J. Differ. Geom. 109(2), 189–221 (2018)

    MathSciNet  MATH  Google Scholar 

  7. Bourgain, J., Shao, P., Sogge, C.D., Yao, X.: On \(L^p\)-resolvent estimates and the density of eigenvalues for compact Riemannian manifolds. Commun. Math. Phys. 333(3), 1483–1527 (2015)

    MATH  Google Scholar 

  8. Brézis, H., Kato, T.: Remarks on the Schrödinger operator with singular complex potentials. J. Math. Pures Appl. (9) 58(2), 137–151 (1979)

    MathSciNet  MATH  Google Scholar 

  9. Bui, T.A., Duong, X.T., Hong, Y.: Dispersive and Strichartz estimates for the three-dimensional wave equation with a scaling-critical class of potentials. J. Funct. Anal. 271(8), 2215–2246 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Burq, N., Lebeau, G., Planchon, F.: Global existence for energy critical waves in 3-D domains. J. Am. Math. Soc. 21(3), 831–845 (2008)

    MathSciNet  MATH  Google Scholar 

  11. Carleson, L., Sjölin, P.: Oscillatory integrals and a multiplier problem for the disc. Studia Math. 44, 287–299 (1972)

    MathSciNet  MATH  Google Scholar 

  12. Chen, P., Ouhabaz, E.M., Sikora, A., Yan, L.: Restriction estimates, sharp spectral multipliers and endpoint estimates for Bochner–Riesz means. J. Anal. Math. 129, 219–283 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Chernoff, P.R.: Schrödinger and Dirac operators with singular potentials and hyperbolic equations. Pac. J. Math. 72(2), 361–382 (1977)

    MATH  Google Scholar 

  14. Duong, X.T., Ouhabaz, E.M., Sikora, A.: Plancherel-type estimates and sharp spectral multipliers. J. Funct. Anal. 196(2), 443–485 (2002)

    MathSciNet  MATH  Google Scholar 

  15. Ferreira, D.D.S., Kenig, C.E., Salo, M.: On \(L^p\) resolvent estimates for Laplace–Beltrami operators on compact manifolds. Forum Math. 26(3), 815–849 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Güneysu, B.: On generalized Schrödinger semigroups. J. Funct. Anal. 262(11), 4639–4674 (2012)

    MathSciNet  MATH  Google Scholar 

  17. Hassell, A., Tacy, M.: Improvement of eigenfunction estimates on manifolds of nonpositive curvature. Forum Math. 27(3), 1435–1451 (2015)

    MathSciNet  MATH  Google Scholar 

  18. Hörmander, L.: Estimates for translation invariant operators in \(L^{p}\) spaces. Acta Math. 104, 93–140 (1960)

    MathSciNet  MATH  Google Scholar 

  19. Hörmander, L.: Oscillatory integrals and multipliers on \(FL^{p}\). Ark. Mat. 11, 1–11 (1973)

    MathSciNet  MATH  Google Scholar 

  20. Hörmander, L.: The Analysis of Linear Partial Differential Operators. III, Classics in Mathematics. Springer, Berlin (2007) (Pseudo-differential operators; Reprint of the 1994 edition)

  21. Huang, S., Sogge, C.D.: Concerning \(L^p\) resolvent estimates for simply connected manifolds of constant curvature. J. Funct. Anal. 267(12), 4635–4666 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Ionescu, A.D., Jerison, D.: On the absence of positive eigenvalues of Schrödinger operators with rough potentials. Geom. Funct. Anal. 13(5), 1029–1081 (2003)

    MathSciNet  MATH  Google Scholar 

  23. Jerison, D., Kenig, C.E.: Unique continuation and absence of positive eigenvalues for Schrödinger operators. Ann. Math. (2) 121(3), 463–494 (1985) (With an appendix by E. M. Stein)

  24. Journé, J.-L., Soffer, A., Sogge, C.D.: Decay estimates for Schrödinger operators. Commun. Pure Appl. Math. 44(5), 573–604 (1991)

    MATH  Google Scholar 

  25. Kapitanskiĭ, L.V.: Estimates for norms in Besov and Lizorkin-Triebel spaces for solutions of second-order linear hyperbolic equations. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 171(20), 106–162 (1989) (185–186)

  26. Kenig, C.E., Ruiz, A., Sogge, C.D.: Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators. Duke Math. J. 55(2), 329–347 (1987)

    MathSciNet  MATH  Google Scholar 

  27. Kenig, C.E., Nadirashvili, N.: A counterexample in unique continuation. Math. Res. Lett. 7(5–6), 625–630 (2000)

    MathSciNet  MATH  Google Scholar 

  28. Koch, H., Tataru, D.: Sharp counterexamples in unique continuation for second order elliptic equations. J. Reine Angew. Math. 542, 133–146 (2002)

    MathSciNet  MATH  Google Scholar 

  29. Koch, H., Tataru, D., Zworski, M.: Semiclassical \(L^p\) estimates. Ann. Henri Poincaré 8(5), 885–916 (2007)

    MathSciNet  MATH  Google Scholar 

  30. Li, P., Yau, S.-T.: On the parabolic kernel of the Schrödinger operator. Acta Math. 156(3–4), 153–201 (1986)

    MathSciNet  Google Scholar 

  31. Mockenhaupt, G., Seeger, A., Sogge, C.D.: Local smoothing of Fourier integral operators and Carleson–Sjölin estimates. J. Am. Math. Soc. 6, 65–130 (1993)

    MATH  Google Scholar 

  32. Nicola, F.: Slicing surfaces and the Fourier restriction conjecture. Proc. Edinb. Math. Soc. (2) 52(2), 515–527 (2009)

    MathSciNet  MATH  Google Scholar 

  33. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. I. Functional Analysis. Academic Press, New York (1972)

    MATH  Google Scholar 

  34. Remling, C.: Finite propagation speed and kernel estimates for Schrödinger operators. Proc. Am. Math. Soc. 135(10), 3329–3340 (2007)

    MATH  Google Scholar 

  35. Rodnianski, I., Schlag, W.: Time decay for solutions of Schrödinger equations with rough and time-dependent potentials. Invent. Math. 155(3), 451–513 (2004)

    MathSciNet  MATH  Google Scholar 

  36. Seeger, A., Sogge, C.D.: On the boundedness of functions of (pseudo-) differential operators on compact manifolds. Duke Math. J. 59(3), 709–736 (1989)

    MathSciNet  MATH  Google Scholar 

  37. Shao, P., Yao, X.: Uniform Sobolev resolvent estimates for the Laplace-Beltrami operator on compact manifolds. Int. Math. Res. Not. IMRN 12, 3439–3463 (2014)

    MathSciNet  MATH  Google Scholar 

  38. Simon, B.: Schrödinger semigroups. Bull. Am. Math. Soc. (N.S.) 7(3), 447–526 (1982)

    MATH  Google Scholar 

  39. Simon, B.: Operator Theory, A Comprehensive Course in Analysis, Part 4. American Mathematical Society, Providence, RI (2015)

    MATH  Google Scholar 

  40. Sogge, C.D.: On the convergence of Riesz means on compact manifolds. Ann. Math. (2) 126(2), 439–447 (1987)

    MathSciNet  MATH  Google Scholar 

  41. Sogge, C.D.: Concerning the \(L^p\) norm of spectral clusters for second-order elliptic operators on compact manifolds. J. Funct. Anal. 77(1), 123–138 (1988)

    MathSciNet  MATH  Google Scholar 

  42. Sogge, C.D.: Eigenfunction and Bochner Riesz estimates on manifolds with boundary. Math. Res. Lett. 9(2–3), 205–216 (2002)

    MathSciNet  MATH  Google Scholar 

  43. Sogge, C.D.: Hangzhou Lectures on Eigenfunctions of the Laplacian. Annals of Mathematics Studies, vol. 188. Princeton University Press, Princeton, NJ (2014)

    MATH  Google Scholar 

  44. Sogge, C.D.: Fourier Integrals in Classical Analysis, 2nd ed. Cambridge Tracts in Mathematics, vol. 210. Cambridge University Press, Cambridge (2017)

  45. Sogge, C.D., Toth, J.A., Zelditch, S.: About the blowup of quasimodes on Riemannian manifolds. J. Geom. Anal. 21(1), 150–173 (2011)

    MathSciNet  MATH  Google Scholar 

  46. Sogge, C.D., Zelditch, S.: A note on \(L^p\)-norms of quasi-modes, some topics in harmonic analysis and applications. Adv. Lect. Math. (ALM) 34, 385–397 (2016)

    MATH  Google Scholar 

  47. Stein, E.M.: Oscillatory integrals in Fourier analysis. Beijing lectures in harmonic analysis (Beijing, 1984). Ann. Math. Stud. 112, 307–355 (1986)

    Google Scholar 

  48. Stein, E.M.: Singular integrals and differentiability properties of functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton, NJ (1970)

  49. Stollmann, P., Voigt, J.: Perturbation of Dirichlet forms by measures. Potential Anal. 5(2), 109–138 (1996)

    MathSciNet  MATH  Google Scholar 

  50. Strichartz, R.S.: Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J. 44(3), 705–714 (1977)

    MathSciNet  MATH  Google Scholar 

  51. Sturm, K.-T.: Schrödinger semigroups on manifolds. J. Funct. Anal. 118(2), 309–350 (1993)

    MathSciNet  MATH  Google Scholar 

  52. Tomas, P.A.: A restriction theorem for the Fourier transform. Bull. Am. Math. Soc. 81, 477–478 (1975)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to W. Schlag and K.-T. Sturm for helpful suggestions and comments. The research was also carried out in part while the third author was visiting the Mittag-Leffler Institute, and he wishes to thank the institute for its hospitality and the feedback received from fellow visitors, especially R. Killip. The research was also carried in part while this author was visiting the University of Edinburgh and the University of Birmingham and he also wishes to thank these institutions for their hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew D. Blair.

Additional information

In memoriam: Elias M. Stein (1931–2018).

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Matthew D. Blair was partially supported by NSF Grant DMS-1565436, Y. Sire was partially supported by the Simons Foundation and Christopher D. Sogge was supported in part by the NSF (NSF Grant DMS-1665373) and the Simons Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blair, M.D., Sire, Y. & Sogge, C.D. Quasimode, Eigenfunction and Spectral Projection Bounds for Schrödinger Operators on Manifolds with Critically Singular Potentials. J Geom Anal 31, 6624–6661 (2021). https://doi.org/10.1007/s12220-019-00287-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-019-00287-z

Keywords

Mathematics Subject Classification

Navigation