Skip to main content
Log in

Parabolic Omori–Yau Maximum Principle for Mean Curvature Flow and Some Applications

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We derive a parabolic version of Omori–Yau maximum principle for a proper mean curvature flow when the ambient space has lower bound on \(\ell \)-sectional curvature. We apply this to show that the image of Gauss map is preserved under a proper mean curvature flow in euclidean spaces with uniformly bounded second fundamental forms. This generalizes the result of Wang (Math Res Lett 10:287–299, 2003) for compact immersions. We also prove a Omori–Yau maximum principle for properly immersed self-shrinkers, which improves a result in Chen et al. (Ann Glob Anal Geom 46:259–279, 2014).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alías, L., Mastrolia, P., Rigoli, M.: Maximum Principles and Geometric Applications. Springer Monographs in Mathematics. Springer, New York (2016). ISBN 978-3-319-24335-1

  2. Chen, Q., Jost, J., Qiu, H.: Omori-Yau maximum principles, V-harmonic maps and their geometric applications. Ann. Glob. Anal. Geom. 46, 259–279 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, Q., Xin, Y.L.: A generalized maximum principle and its applications in geometry. Am. J. Math. 114(2), 355–366 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cheng, Q.M., Peng, Y.: Complete self-shrinkers of the mean curvature flow. Calc. Var. 52, 497 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Colding, T., Minicozzi, W.: Generic mean curvature flow I: generic singularities. Ann. Math. (2) 175(2), 755–833 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ecker, K., Huisken, G.: Mean curvature evolution of entire graphs. Ann. Math. 2(130), 453–471 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Li, P., Wang, J.: Comparison theorem for Kähler manifolds and positivity of spectrum. J. Differ. Geom. 69(1), 043–074 (2005)

    Article  Google Scholar 

  8. Neves, A.: Singularities of Lagrangian mean curvature flow: zero-Maslov class case. Invent. math. 168, 449 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Omori, H.: Isometric immersion of Riemannian manifolds. J. Math. Soc. Jpn. 19, 205–214 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  10. Pigola, S., Rigoli, M., Setti, A.: Maximum Principle on Riemannian Manifolds and Applications. Memoirs of the American Mathematical Society, vol. 174(822). American Mathematical Soc, Providence (2005)

    MATH  Google Scholar 

  11. Smoczyk, K.: A canonical way to deform a Lagrangian submanifold. arXiv:dg-ga/9605005

  12. Wang, M.T.: Gauss map of the mean curvature flow. Math. Res. Lett. 10, 287–299 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Yau, S.T.: Harmonic function on complete Riemannian manifolds. Commun. Pure. Appl. Math. 28, 201–228 (1975)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Man Shun Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J.M.S. Parabolic Omori–Yau Maximum Principle for Mean Curvature Flow and Some Applications. J Geom Anal 28, 3183–3195 (2018). https://doi.org/10.1007/s12220-017-9954-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-017-9954-5

Keywords

Mathematics Subject Classification

Navigation