Microgravity Science and Technology

, Volume 30, Issue 3, pp 265–275 | Cite as

Numerical Simulation for Magneto Nanofluid Flow Through a Porous Space with Melting Heat Transfer

  • T. Hayat
  • Faisal Shah
  • A. Alsaedi
  • M. Waqas
Original Article


Melting heat transfer and non-Darcy porous medium effects in MHD stagnation point flow toward a stretching surface of variable thickness are addressed. Brownian motion and thermophoresis in nanofluid modeling are retained. Zero mass flux condition for concentration at surface is imposed. The problem of ordinary differential system are analyzed numerically through shooting technique. Graphically results of various physical variables on the velocity, temperature and concentration are studied. Skin friction coefficient local Nusselt number and Sherwood number are also addressed through tabulated values. The results described here illustrate that the velocity field is higher via larger melting parameter. However reverse situation is examined for Hartman number. Moreover the influence of thermophoresis parameter on temperature and concentration is noted similar.


Nanofluid Variable stretching surface Melting heat transfer Non-Darcy porous medium Shooting method 


Compliance with Ethical Standards

Conflict of interest

The authors declare they have no conflict of interest.


  1. Abbas, T., Bhatti, M.M., Ayub, M.: Aiding and opposing of mixed convection Casson nanofluid flow with chemical reactions through a porous Riga plate. Proc. Inst. Mech. Eng Part E J. Process Mech. Eng. (2017a) Scholar
  2. Abbas, T., Hayat, T., Ayub, M., Bhatti, M.M., Alsaedi, A.: Electromagnetohydrodynamic nanofluid flow past a porous Riga plate containing gyrotactic microorganism. Neural Comput. Appl. (2017b)
  3. Azmi, W.H., Hamid, K.A., Mamat, R., Sharma, K.V., Mohamad, M.S.: Effects of working temperature on thermo-physical properties and forced convection heat transfer of TiO2 nanofluids in water – Ethylene glycol mixture. Appl. Thermal Eng. 106, 1190–11997 (2016)CrossRefGoogle Scholar
  4. Babu, M.J., Sandeep, N.: 3D MHD slip flow of a nanofluid over a slendering stretching sheet with thermophoresis and Brownian motion effects. J. Mol. Liq. 222, 1003–1009 (2016)CrossRefGoogle Scholar
  5. Bhatti, M.M., Abbas, M.A., Rashidi, M.M.: A robust numerical method for solving stagnation point flow over a permeable shrinking sheet under the influence of MHD. Appl. Math. Comput. 316, 381–389 (2018)MathSciNetGoogle Scholar
  6. Choi, S.U.S., Eastman, J.A.: Enhancing thermal conductivity of fluids with nanoparticles. In: The Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, San Francisco, USA, ASME FED 231/MD, vol. 66, pp 99–105 (1995)Google Scholar
  7. Choi, S.U.S., Zhang, Z.G., Yu, W., Lockwood, F.E., Grulke, E.A.: Anomalously thermal conductivity enhancement in nanotube suspensions. Appl. Phys. Lett. 79, 2252–2254 (2001)CrossRefGoogle Scholar
  8. Darcy, H.: Les Fontaines Publiques De La Ville De Dijon. Victor Dalmont Paris (1856)Google Scholar
  9. Dhanai, R., Rana, P., Kumar, L.: Multiple solutions of MHD boundary layer flow and heat transfer behavior of nanofluids induced by a power-law stretching/shrinking permeable sheet with viscous dissipation. Powder Technol. 273, 62–70 (2015)CrossRefGoogle Scholar
  10. Epstein, M., Cho, D.H.: Melting heat transfer in steady laminar flow over a flat plate. J. Heat Transf. 98, 531–533 (1976)CrossRefGoogle Scholar
  11. Forchheimer, P.: Wasserbewegung durch boden. Zeitschrift Ver D. Ing. 45, 1782–1788 (1901)Google Scholar
  12. Gireesha, B.J., Mahanthesh, B., Manjunatha, P.T., Gorla, R.S.R.: Numerical solution for hydromagnetic boundary layer flow and heat transfer past a stretching surface embedded in non-Darcy porous medium with fluid-particle suspension. J. Nigerian Math. Soc. 34, 267–285 (2015)MathSciNetCrossRefMATHGoogle Scholar
  13. Gireesha, B.J., Mahanthesh, B., Shivakumara, I.S., Eshwarappa, K.M.: Melting heat transfer in boundary layer stagnation-point flow of nanofluid toward a stretching sheet with induced magnetic field. Eng. Sci. Tech. Int. J. 19, 313–321 (2016)CrossRefGoogle Scholar
  14. Haghighi, E.B., Utomo, A.T., Ghanbarpour, M., Zavareh, A.I.T., Poth, H., Khodabandeh, R., Pacek, A., Palm, B.E.: Experimental study on convective heat transfer of nanofluids in turbulent flow: methods of comparison of their performance. Exp. Thermal Fluid Sci. 57, 378–387 (2014)CrossRefGoogle Scholar
  15. Haq, R.U., Noor, N.F.M., Khan, Z.H.: Numerical simulation of water based magnetite nanoparticles between two parallel disks. Adv. Powder Technol. 27, 1568–1575 (2016)CrossRefGoogle Scholar
  16. Hayat, T., Muhammad, T., Shehzad, S.A., Alsaedi, A.: Simultaneous effects of magnetic field and convective condition in three-dimensional flow of couple stress nanofluid with heat generation/absorption. J. Braz. Soc. Mech. Sci. (2015)
  17. Hayat, T., Waqas, M., Shehzad, S. A., Alsaedi, A.: A model of solar radiation and Joule heating in magnetohydrodynamic (MHD) convective flow of thixotropic nanofluid. J. Mol. Liq. 215, 704–710 (2016a)Google Scholar
  18. Hayat, T., Waqas, M., Khan, M.I., Alsaedi, A.: Analysis of thixotropic nanomaterial in a doubly stratified medium considering magnetic field effects. Int. J. Heat Mass Transf. 102, 1123–1129 (2016b)Google Scholar
  19. Hayat, T., Waqas, M., Shehzad, S.A., Alsaedi, A.: On model of Burgers fluid subject to magneto nanoparticles and convective conditions. J. Mol. Liq. 222, 181–187 (2016c)Google Scholar
  20. Hayat, T., Qayyum, S., Alsaedi, A., Shehzad, S.A.: Nonlinear thermal radiation aspects in stagnation point flow of tangent hyperbolic nanofluid with double diffusive convection. J. Mol. Liq. 223, 969–978 (2016d)Google Scholar
  21. Hayat, T., Bashir, G., Waqas, M., Alsaedi, A.: MHD 2D flow of Williamson nanofluid over a nonlinear variable thicked surface with melting heat transfer. J. Mol. Liq. 223, 836–844 (2016e)Google Scholar
  22. Hayat, T., Khan, M.I., Alsaedi, A., Khan, M.I.: Homogeneous-heterogeneous reactions and melting heat transfer effects in the MHD flow by a stretching surface with variable thickness. J. Mol. Liq. 223, 960–968 (2016f)Google Scholar
  23. Hayat, T., Khan, M.I., Farooq, M., Alsaedi, A., Waqas, M., Yasmeen, T.: Impact of Cattaneo-Christov heat flux model in flow of variable thermal conductivity fluid over a variable thicked surface. Int. J. Heat Mass Transf. 99, 702–710 (2016g)Google Scholar
  24. Hayat, T., Zubair, M., Ayub, M., Waqas, M., Alsaedi, A.: Stagnation point flow towards nonlinear stretching surface with Cattaneo-Christov heat flux. Eur. Phys. J. Plus (in press) (2016h)Google Scholar
  25. Hayat, T., Shah, F., Alsaedi, A., Hussain, Z.: Outcome of homogeneous and heterogeneous reactions in Darcy-Forchheimer flow with nonlinear thermal radiation and convective condition. Res. Phys. 7, 2497–2505 (2017a)Google Scholar
  26. Hayat, T., Hussain, Z., Alsaedi, A., Ahmad, B.: Numerical study for slip flow of carbon–water nanofluids. Comput. Methods Appl. Mech. Eng. 319, 366–378 (2017b)Google Scholar
  27. Ibrahim, W., Haq, R.U.: Magnetohydrodynamic (MHD) stagnation point flow of nanofluid past a stretching sheet with convective boundary condition. J. Braz. Soci. Mech. Sci. Eng. 38, 1155–1164 (2016)CrossRefGoogle Scholar
  28. Imran Khan, M., Ijaz Khan, M., Waqas, M., Hayat, T., Alsaedi, A.: Chemically reactive flow of Maxwell liquid due to variable thicked surface. Int. Commun. Heat Mass Transf. 86, 231–238 (2017)CrossRefGoogle Scholar
  29. Kameswaran, P.K., Hemalatha, K., Madhavi, M.V.D.N.S.: Melting effect on convective heat transfer from a vertical plate embedded in a non-Darcy porous medium with variable permeability. Adv. Powder Technol. 27, 417–425 (2016)CrossRefGoogle Scholar
  30. Khader, M.M., Megahed, A.M.: Numerical solution for boundary layer flow due to a nonlinearly stretching sheet with variable thickness and slip velocity. Eur. Phys. J. Plus 100, 128 (2013)Google Scholar
  31. Khan, W.A., Pop, I.: Boundary-layer flow of a nanofluid past a stretching sheet. Int. J. Heat Mass Transf. 53, 2477–2483 (2010)CrossRefMATHGoogle Scholar
  32. Khan, M., Khan, W.A., Alshomrani, A.S.: Non-linear radiative flow of three-dimensional Burgers nanofluid with new mass flux effect. Int. J. Heat Mass Transf. 101, 570–576 (2016)CrossRefGoogle Scholar
  33. Khan, M.I., Waqas, M., Hayat, T., Alsaedi, A., Khan, M.I.: Significance of nonlinear radiation in mixed convection flow of magneto Walter-B nanoliquid. Int. J. Hydrog. Energy 42, 26408–26416 (2017)CrossRefGoogle Scholar
  34. Mahanthesh, B., Gireesha, B.J., Gorla, R.S.R., Abbasi, F.M., Shehzad, S.A.: Numerical solutions for magnetohydrodynamic flow of nanofluid over a bidirectional non-linear stretching surface with prescribed surface heat flux boundary. J. Magn. Magn. Mater. 417, 189–196 (2016a)Google Scholar
  35. Mahanthesh, B., Gireesha, B.J., Gorla, R.S.R.: Nonlinear radiative heat transfer in MHD three-dimensional flow of water based nanofluid over a non-linearly stretching sheet with convective boundary condition. J. Nigerian Math. Soc. 35, 178–198 (2016b)Google Scholar
  36. Malekzadeh, S., Roohi, E.: Investigation 333 of different droplet formation regimes in a T-junction microchannel using the VOF technique in OpenFOAM. Microgravity Sci. Technol. 27, 231–243 (2015)CrossRefGoogle Scholar
  37. Malvandi, A., Ghasemi, A., Ganji, D.D., Pop, I.: Effects of nanoparticles migration on heat transfer enhancement at film condensation of nanofluids over a vertical cylinder. Adv. Powder Tech. (2016)
  38. Muskat, M.: The Flow of Homogeneous Fluids through Porous Media. Edwards MI (1946)Google Scholar
  39. Nanjundappa, C.E., Shivakumara, I.S., Lee, J.: Effect of coriolis force on Bénard-Marangoni convection in a rotating ferrofluid layer with MFD viscosity. Microgravity Sci. Technol. 27, 27–37 (2015)CrossRefGoogle Scholar
  40. Navas, J., Coronilla, A.S., Martin, E.I., Teruel, M., Gallardo, J.J., Aguilar, T., Villarejo, R.G., Alcantara, R., Lorenzo, C.F., Pinero, J.C., Calleja, J.M.: On the enhancement of heat transfer fluid for concentrating solar power using Cu and Ni nanofluids: an experimental and molecular dynamics study. Nano Energy 27, 213–224 (2016)CrossRefGoogle Scholar
  41. Pandy, A.K., Kumar, M.: Natural convection and thermal radiation influence on nanofluid flow over a stretching cylinder in a porous medium with viscous dissipation. Alex Eng. (2016)
  42. Qiang, L.Y., Hui, C.W., Ling, L.: Numerical simulation of capillary flow in fan-shaped asymmetric interior corner under microgravity. Microgravity Sci. Technol. 29, 65–79 (2015)CrossRefGoogle Scholar
  43. Sadiq, M.A., Waqas, M., Hayat, T.: Importance of Darcy-Forchheimer relation in chemically reactive radiating flow towards convectively heated surface. J. Mol. Liq. 248, 1071–1077 (2017)CrossRefGoogle Scholar
  44. Salman, B.H., Mohammed, H.A., Kherbeet, A.Sh.: Numerical and experimental investigation of heat transfer enhancement in a microtube using nanofluids. Int. Commun. Heat Mass Transf. 59, 88–100 (2014)CrossRefGoogle Scholar
  45. Seddeek, M.A.: Influence of viscous dissipation and thermophoresis on Darcy-Forchheimer mixed convection in a fluid saturated porous media. J. Coll. Interf. Sci. 293, 137–142 (2006)CrossRefGoogle Scholar
  46. Shehzad, S.A., Abbasi, F.M., Hayat, T., Alsaedi, A.: Cattaneo-Christov heat flux model for Darcy-Forchheimer flow of an Oldroyd-B fluid with variable conductivity and non-linear convection. J. Mol. Liq. (2016)
  47. Sheikholeslami, M., Bhatti, M.M.: Active method for nanofluid heat transfer enhancement by means of EHD. Int. J. Heat Mass Transf. 109, 115–122 (2017a)Google Scholar
  48. Sheikholeslami, M., Bhatti, M.M.: Forced convection of nanofluid in presence of constant magnetic field considering shape effects of nanoparticles. Int. J. Heat Mass Transf. 111, 1039–1049 (2017b)Google Scholar
  49. Smirnov, N.N., Nikitin, V.F., Norkin, A.V., Kudryavtseva, O.V., Legros, J.C., Istasse, E., Shevtsova, V.M.: Capillary driven filtration in porous media. Microgravity Sci. Technol. 7, 23–35 (1999)Google Scholar
  50. Smirnov, N.N., Legros, J.C., Nikitin, V.F., Istasse, E., Schramm, L., Wassmuth, F., Hart, D.: Filtration in artificial porous media and natural sands under microgravity conditions. Microgravity Sci. Technol. 14, 3–28 (2003)CrossRefGoogle Scholar
  51. Wahed, M.S.A., Elbashbeshy, E.M.A., Emam, T.G.: Flow and heat trasfer over a moving surface with nonlinear velocity and variable thickness in a nanofluids in the presence of Brownian motion. Appl. Math. Comput. 254, 49–62 (2015)MathSciNetGoogle Scholar
  52. Waqas, M., Farooq, M., Khan, M.I., Alsaedi, A., Yasmeen, T.: Magnetohydrodynamic (MHD) mixed convection flow of micropolar liquid due to nonlinear stretched sheet with convective condition. Int. J. Heat Mass Transf. 102, 766–772 (2016)CrossRefGoogle Scholar
  53. Waqas, M., Khan, M.I., Hayat, T., Alsaedi, A.: Numerical simulation for magneto Carreau nanofluid model with thermal radiation: a revised model. Comput. Methods Appl. Mech. Eng. 324, 640–653 (2017)MathSciNetCrossRefGoogle Scholar
  54. Waqas, M., Hayat, T., Shehzad, S.A., Alsaedi, A.: Transport of magnetohydrodynamic nanomaterial in a stratified medium considering gyrotactic microorganisms. Phys. B: Condens. Matter 529, 33–40 (2018)CrossRefGoogle Scholar
  55. Xie, H., Zheng, Z., Zhang, L., Yokota, Y., Kawazoe, Y., Yoshikawa, A.: Simulation on thermocapillary-driven drop coalescence by hybrid Lattice Boltzmann method. Microgravity Sci. Technol. 28, 67–77 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsQuaid-I-Azam UniversityIslamabadPakistan
  2. 2.Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations