Skip to main content
Log in

Coenzyme Q and respiratory supercomplexes: physiological and pathological implications

  • Current topics in Biology
  • Published:
Rendiconti Lincei. Scienze Fisiche e Naturali Aims and scope Submit manuscript

Abstract

It was discovered over 60 years ago that the mitochondrial respiratory chain is constituted of a series of protein complexes imbedded in the inner mitochondrial membrane. Experimental evidence has more recently ascertained that the major respiratory complexes involved in energy conservation are assembled as supramolecular units (supercomplexes, SCs) in stoichiometric ratios. The functional role of SCs is less well defined, and still open to discussion. Several lines of evidence favour the concept that electron transfer from Complex I to Complex III operates by channelling of electrons through Coenzyme Q molecules bound to the SC I1III2IV n , in contrast with the previously accepted hypothesis that the transfer of reducing equivalents from Complex I to Complex III occurs via random diffusion of the Coenzyme Q molecules in the lipid bilayer. On the contrary, electron transfer from Complex III to Complex IV seems to operate, at least in mammals, by random diffusion of cytochrome c molecules between the respiratory complexes even if assembled in SCs. Furthermore, another property provided by the supercomplex assembly is the control of generation of reactive oxygen species by Complex I, that might be important in the regulation of signal transduction from mitochondria. This review discusses physiological and pathological implications of the supercomplex assembly of the respiratory chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reprinted from Green and Tzagoloff (1966) with permission from Elsevier

Fig. 2

Reprinted from Letts and Sazanov (2017) with permission from Springer Nature

Fig. 3

Reprinted from Letts and Sazanov (2017) with permission from Springer Nature

Fig. 4

Reprinted from Maranzana et al. (2013) with permission from Mary Ann Liebert, Inc.

Similar content being viewed by others

References

  • Acin-Perez R, Enriquez JA (2014) The function of the respiratory supercomplexes: the plasticity model. Biochim Biophys Acta 1837:444–450

    Article  CAS  Google Scholar 

  • Acín-Pérez R, Fernández-Silva P, Peleato ML, Pérez-Martos A, Enriquez JA (2008) Respiratory active mitochondrial supercomplexes. Mol Cell 32:529–539

    Article  CAS  Google Scholar 

  • Althoff T, Mills DJ, Popot JL, Kühlbrandt W (2011) Arrangement of electron transport chain components in bovine mitochondrial supercomplex I1III2IV1. EMBO J 30:4652–4664

    Article  CAS  Google Scholar 

  • Andreyev AY, Kushnareva YE, Murphy AN, Starkov AA (2015) Mitochondrial ROS metabolism: 10 years later. Biochem (Mosc) 80:517–531

    Article  CAS  Google Scholar 

  • Aon MA, Cortassa S, O’Rourke B (2010) Redox-optimized ROS balance: a unifying hypothesis. Biochim Biophys Acta 1797:865–877

    Article  CAS  Google Scholar 

  • Baracca A, Chiaradonna F, Sgarbi G, Solaini G, Alberghina L, Lenaz G (2010) Mitochondrial Complex I decrease is responsible for bioenergetic dysfunction in K-ras transformed cells. Biochim Biophys Acta 1797:314–323

    Article  CAS  Google Scholar 

  • Benard G, Faustin B, Galinier A, Rocher C, Bellance N, Smolkova K, Casteilla L, Rossignol R, Letellier T (2008) Functional dynamic compartmentalization of respiratory chain intermediate substrates: implications for the control of energy production and mitochondrial diseases. Int J Biochem Cell Biol 40:1543–1554

    Article  CAS  Google Scholar 

  • Bianchi C, Fato R, Genova ML, Parenti Castelli G, Lenaz G (2003) Structural and functional organization of Complex I in the mitochondrial respiratory chain. BioFactors 18:3–9

    Article  CAS  Google Scholar 

  • Bianchi C, Genova ML, Parenti Castelli G, Lenaz G (2004) The mitochondrial respiratory chain is partially organized in a supercomplex assembly: kinetic evidence using flux control analysis. J Biol Chem 279:36562–36569

    Article  CAS  Google Scholar 

  • Blaza JN, Serreli R, Jones AJ, Mohammed K, Hirst J (2014) Kinetic evidence against partitioning of the ubiquinone pool and the catalytic relevance of respiratory-chain supercomplexes. Proc Natl Acad Sci USA 111:15735–15740

    Article  CAS  Google Scholar 

  • Chance B, Williams GR (1955) A method for the localization of sites for oxidative phosphorylation. Nature 176:250–254

    Article  CAS  Google Scholar 

  • Chen S, He Q, Greenberg ML (2008) Loss of tafazzin in yeast leads to increased oxidative stress during respiratory growth. Mol Microbiol 68:1061–1072

    Article  CAS  Google Scholar 

  • Cortassa S, O’Rourke B, Aon MA (2014) Redox-optimized ROS balance and the relationship between mitochondrial respiration and ROS. Biochim Biophys Acta 1837:287–295

    Article  CAS  Google Scholar 

  • Covian R, Zwicker K, Rotsaert FA, Trumpower BL (2007) Asymmetric and redox-specific binding of quinone and quinol at center N of the dimeric yeast cytochrome bc1 complex. Consequences for semiquinone stabilization. J Biol Chem 282:24198–24208

    Article  CAS  Google Scholar 

  • Crane FL, Hatefi Y, Lester RL, Widmer C (1957) Isolation of a quinone from beef heart mitochondria. Biochim Biophys Acta 25:220–221

    Article  CAS  Google Scholar 

  • Crane FL, Widmer C, Lester RL, Hatefi Y (1959) Studies on the electron transport system. XV. Coenzyme Q (Q275) and the succinoxidase activity of the electron transport particle. Biochim Biophys Acta 31:476–489

    Article  CAS  Google Scholar 

  • Dencher NA, Frenzel M, Reifschneider NH, Sugawa M, Krause F (2007) Proteome alterations in rat mitochondria caused by aging. Ann N Y Acad Sci 1100:291–298

    Article  CAS  Google Scholar 

  • Diaz F, Enríquez JA, Moraes CT (2012) Cells lacking Rieske iron-sulfur protein have a reactive oxygen species-associated decrease in respiratory complexes I and IV. Mol Cell Biol 32:415–429

    Article  CAS  Google Scholar 

  • Dudkina NV, Kudryashev M, Stahlberg H, Boekema EJ (2011) Interaction of complexes I, III, and IV within the bovine respirasome by single particle cryoelectron tomography. Proc Natl Acad Sci USA 108:15196–15200

    Article  Google Scholar 

  • Enríquez JA (2016) Supramolecular organization of respiratory complexes. Annu Rev Physiol 78:533–561

    Article  CAS  Google Scholar 

  • Estornell E, Fato R, Castelluccio C, Cavazzoni M, Parenti Castelli G, Lenaz G (1992) Saturation kinetics of coenzyme Q in NADH and succinate oxidation in beef heart mitochondria. FEBS Lett 311:107–109

    Article  CAS  Google Scholar 

  • Fato R, Estornell E, Di Bernardo S, Pallotti F, Parenti Castelli G, Lenaz G (1996) Steady-state kinetics of the reduction of coenzyme Q analogs by complex I (NADH:ubiquinone oxidoreductase) in bovine heart mitochondria and submitochondrial particles. Biochemistry 35:2705–2716

    Article  CAS  Google Scholar 

  • Fiedorczuk K, Letts JA, Degliesposti G, Kaszuba K, Skehel M, Sazanov LA (2016) Atomic structure of the entire mammalian mitochondrial complex I. Nature 538:406–410

    Article  CAS  Google Scholar 

  • Gao X, Wen X, Esser L, Quinn B, Yu L, Yu CA, Xia D (2003) Structural basis for the quinone reduction in the bc1 complex: a comparative analysis of crystal structures of mitochondrial cytochrome bc1 with bound substrate and inhibitors at the Qi site. Biochemistry 42:9067–9080

    Article  CAS  Google Scholar 

  • Genova ML, Lenaz G (2010) Structure and organization of mitochondrial respiratory complexes: a new understanding of an old subject. Antioxid Redox Signal 12:961–1008

    Article  CAS  Google Scholar 

  • Genova ML, Lenaz G (2013) A critical appraisal of the role of respiratory supercomplexes in mitochondria. Biol Chem 394:631–639

    Article  CAS  Google Scholar 

  • Genova ML, Lenaz G (2014) Functional role of mitochondrial respiratory supercomplexes. Biochim Biophys Acta 1837:427–443

    Article  CAS  Google Scholar 

  • Genova ML, Lenaz G (2015) The interplay between respiratory supercomplexes and ROS in aging. Antioxid Redox Signal 23:208–238

    Article  CAS  Google Scholar 

  • Genova ML, Baracca A, Biondi A, Casalena G, Faccioli M, Falasca AI, Formiggini G, Sgarbi G, Solaini G, Lenaz G (2008) Is supercomplex organization of the respiratory chain required for optimal electron transfer activity? Biochim Biophys Acta 1777:740–746

    Article  CAS  Google Scholar 

  • Gonzalvez F, D’Aurelio M, Boutant M, Moustapha A, Puech JP, Landes T, Arnauné-Pelloquin L, Vial G, Taleux N, Slomianny C, Wanders RJ, Houtkooper RH, Bellenguer P, Møller IM, Gottlieb E, Vaz FM, Manfredi G, Petit PX (2013) Barth syndrome: cellular compensation of mitochondrial dysfunction and apoptosis inhibition due to changes in cardiolipin remodeling linked to tafazzin (TAZ) gene mutation. Biochim Biophys Acta 1832:1194–1206

    Article  CAS  Google Scholar 

  • Green DE, Tzagoloff A (1966) The mitochondrial electron transfer chain. Arch Biochem Biophys 116:293–304

    Article  CAS  Google Scholar 

  • Grivennikova VG, Roth R, Zakharova NV, Hägerhäll C, Vinogradov AD (2003) The mitochondrial and prokaryotic proton-translocating NADH: ubiquinone oxidoreductases: similarities and dissimilarities of the quinone-junction sites. Biochim Biophys Acta 1607:79–90

    Article  CAS  Google Scholar 

  • Guarás A, Perales-Clemente E, Calvo E, Acín-Pérez R, Loureiro-Lopez M, Pujol C, Martínez-Carrascoso I, Nuñez E, García-Marqués F, Rodríguez-Hernández MA, Cortés A, Diaz F, Pérez-Martos A, Moraes CT, Fernández-Silva P, Trifunovic A, Navas P, Vazquez J, Enríquez JA (2016) The CoQH2/CoQ ratio serves as a sensor of respiratory chain efficiency. Cell Rep 15:197–209

    Article  CAS  Google Scholar 

  • Gutman M (1985) Kinetic analysis of electron flux through the quinones in the mitochondrial system. In: Lenaz G (ed) Coenzyme Q. Wiley, Chichester, pp 215–234

    Google Scholar 

  • Gutman M, Silman N (1972) Mutual inhibition between NADH oxidase and succinoxidase activities in respiring submitochondrial particles. FEBS Lett 26:207–210

    Article  CAS  Google Scholar 

  • Gutman M, Kearney EB, Singer TP (1971) Control of succinate dehydrogenase in mitochondria. Biochemistry 10:4763–4770

    Article  CAS  Google Scholar 

  • Hackenbrock CR, Chazotte B, Gupte SS (1986) The random collision model and a critical assessment of diffusion and collision in mitochondrial electron transport. J Bioenerg Biomembr 18:331–368

    Article  CAS  Google Scholar 

  • Hatefi Y, Haavik AG, Fowler LR, Griffiths DE (1962a) Studies on the electron transfer system. XLII. Reconstitution of the electron transfer system. J Biol Chem 237:2661–2669

    CAS  Google Scholar 

  • Hatefi Y, Haavik AG, Griffiths DE (1962b) Studies on the electron transfer system. XL. Preparation and properties of mitochondrial DPNH-coenzyme Q reductase. J Biol Chem 237:1676–1680

    CAS  Google Scholar 

  • Heron C, Ragan CI, Trumpower BL (1978) The interaction between mitochondrial NADH-ubiquinone oxidoreductase and ubiquinol-cytochrome c oxidoreductase. Restoration of ubiquinone-pool behaviour. Biochem J 174:791–800

    CAS  Google Scholar 

  • Hochman J, Ferguson-Miller S, Schindler M (1985) Mobility in the mitochondrial electron transport chain. Biochemistry 24:2509–2516

    Article  CAS  Google Scholar 

  • Jezek P, Hlavatá L (2005) Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. Int J Biochem Cell Biol 37:2478–2503

    Article  CAS  Google Scholar 

  • Jones AJ, Blaza JN, Bridges HR, May B, Moore AL, Hirst J (2016) A self-assembled respiratory chain that catalyzes NADH oxidation by ubiquinone-10 cycling between complex I and the alternative oxidase. Angew Chem Int Ed Engl 55:728–731

    Article  CAS  Google Scholar 

  • Jørgensen BM, Rasmussen HN, Rasmussen UF (1985) Ubiquinone reduction pattern in pigeon heart mitochondria. Identification of three distinct ubiquinone pools. Biochem J 229:621–629

    Article  Google Scholar 

  • Kaambre T, Chekulayev V, Shevchuk I, Karu-Varikmaa M, Timohhina N, Tepp K, Bogovskaja J, Kütner R, Valvere V, Saks V (2012) Metabolic control analysis of cellular respiration in situ in intraoperational samples of human breast cancer. J Bioenerg Biomembr 44:539–558

    Article  CAS  Google Scholar 

  • Kaambre T, Chekulayev V, Shevchuk I, Tepp K, Timohhina N, Varikmaa M, Bagur R, Klepinin A, Anmann T, Koit A, Kaldma A, Guzun R, Valvere V, Saks V (2013) Metabolic control analysis of respiration in human cancer tissue. Front Physiol 4:151. https://doi.org/10.3389/fphys.2013.00151

    Article  Google Scholar 

  • Kennedy EP, Lehninger AL (1949) Oxidation of fatty acids and tricarboxylic acid intermediates by isolated rat liver mitochondria. J Biol Chem 179:957–972

    CAS  Google Scholar 

  • Kholodenko BN, Westerhoff HV (1993) Metabolic channelling and control of the flux. FEBS Lett 320:71–74

    Article  CAS  Google Scholar 

  • Kröger A, Klingenberg M (1973a) The kinetics of the redox reactions of ubiquinone related to the electron-transport activity in the respiratory chain. Eur J Biochem 34:358–368

    Article  Google Scholar 

  • Kröger A, Klingenberg M (1973b) Further evidence for the pool function of ubiquinone as derived from the inhibition of the electron transport by antimycin. Eur J Biochem 39:313–323

    Article  Google Scholar 

  • Lapuente-Brun E, Moreno-Loshuertos R, Acín-Pérez R, Latorre-Pellicer A, Colás C, Balsa E, Perales-Clemente E, Quirós PM, Calvo E, Rodríguez-Hernández MA, Navas P, Cruz R, Carracedo Á, López-Otín C, Pérez-Martos A, Fernández-Silva P, Fernández-Vizarra E, Enríquez JA (2013) Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science 340:1567–1570

    Article  CAS  Google Scholar 

  • Lenaz G (2001) The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology. IUBMB Life 52:159–164

    Article  CAS  Google Scholar 

  • Lenaz G (2012) Mitochondria and reactive oxygen species. Which role in physiology and pathology? Adv Exp Med Biol 942:93–136

    Article  CAS  Google Scholar 

  • Lenaz G, Fato R (1986) Is ubiquinone diffusion rate-limiting for electron transfer? J Bioenerg Biomembr 18:369–401

    Article  CAS  Google Scholar 

  • Lenaz G, Genova ML (2007) Kinetics of integrated electron transfer in the mitochondrial respiratory chain: random collisions vs. solid state electron channeling. Am J Physiol Cell Physiol 292:C1221–C1239

    Article  CAS  Google Scholar 

  • Lenaz G, Baracca A, Barbero G, Bergamini C, Dalmonte ME, Del Sole M, Faccioli M, Falasca A, Fato R, Genova ML, Sgarbi G, Solaini G (2010) Mitochondrial respiratory chain super-complex I–III in physiology and pathology. Biochim Biophys Acta 1797:633–640

    Article  CAS  Google Scholar 

  • Lenaz G, Tioli G, Falasca AI, Genova ML (2016) Complex I function in mitochondrial supercomplexes. Biochim Biophys Acta 1857:991–1000

    Article  CAS  Google Scholar 

  • Letts JA, Sazanov LA (2017) Clarifying the supercomplex: the higher-order organization of the mitochondrial electron transport chain. Nat Struct Mol Biol 24:800–808

    Article  CAS  Google Scholar 

  • Letts JA, Fiedorczuk K, Sazanov LA (2016) The architecture of respiratory supercomplexes. Nature 537:644–648

    Article  CAS  Google Scholar 

  • Maranzana E, Barbero G, Falasca AI, Lenaz G, Genova ML (2013) Mitochondrial respiratory supercomplex association limits production of reactive oxygen species from complex I. Antioxid Redox Signal 19:1469–1480

    Article  CAS  Google Scholar 

  • McKenzie M, Lazarou M, Thorburn DR, Ryan MT (2006) Mitochondrial respiratory chain supercomplexes are destabilized in Barth Syndrome patients. J Mol Biol 361:462–469

    Article  CAS  Google Scholar 

  • Milenkovic D, Blaza JN, Larsson NG, Hirst J (2017) The enigma of the respiratory chain supercomplex. Cell Metab 25:765–776

    Article  CAS  Google Scholar 

  • Mitchell P (1975) The protonmotive Q cycle: a general formulation. FEBS Lett 59:137–139

    Article  CAS  Google Scholar 

  • Morton RA (1958) Ubiquinone. Nature 182:1764–1767

    Article  CAS  Google Scholar 

  • Ovádi J (1991) Physiological significance of metabolic channelling. J Theor Biol 152:1–22

    Article  Google Scholar 

  • Ozawa T, Nishikimi M, Suzuki H, Tanaka M, Shimomura Y (1987) Structure and assembly of mitochondrial electron-transfer complexes. In: Ozawa T, Papa S (eds) Bioenergetics: structure and function of energy-transducing systems. Japan Science Society Press, Tokyo, pp 101–119

    Google Scholar 

  • Panov A, Dikalov S, Shalbuyeva N, Hemendinger R, Greenamyre JT, Rosenfeld J (2007) Species- and tissue-specific relationships between mitochondrial permeability transition and generation of ROS in brain and liver mitochondria of rats and mice. Am J Physiol Cell Physiol 292:C708–C718

    Article  CAS  Google Scholar 

  • Piccoli C, Scrima R, Boffoli D, Capitanio N (2006) Control by cytochrome c oxidase of the cellular oxidative phosphorylation system depends on the mitochondrial energy state. Biochem J 396:573–583

    Article  CAS  Google Scholar 

  • Quarato G, Piccoli C, Scrima R, Capitanio N (2011) Variation of flux control coefficient of cytochrome c oxidase and of the other respiratory chain complexes at different values of protonmotive force occurs by a threshold mechanism. Biochim Biophys Acta 1807:1114–1124

    Article  CAS  Google Scholar 

  • Ragan CI, Heron C (1978) The interaction between mitochondrial NADH-ubiquinone oxidoreductase and ubiquinol-cytochrome c oxidoreductase. Evidence for stoicheiometric association. Biochem J 174:783–790

    CAS  Google Scholar 

  • Ragan CI, Cottingham IR (1985) The kinetics of quinone pools in electron transport. Biochim Biophys Acta 811:13–31

    Article  CAS  Google Scholar 

  • Redfearn ER, Pumphrey AM (1960) The kinetics of ubiquinone reactions in heart-muscle preparations. Biochem J 76:64–71

    Article  CAS  Google Scholar 

  • Sarewicz M, Osyczka A (2015) Electronic connection between the quinone and cytochrome C redox pools and its role in regulation of mitochondrial electron transport and redox signaling. Physiol Rev 95:219–243

    Article  CAS  Google Scholar 

  • Schäfer E, Seelert H, Reifschneider NH, Krause F, Dencher NA, Vonck J (2006) Architecture of active mammalian respiratory chain supercomplexes. J Biol Chem 281:15370–15375

    Article  CAS  Google Scholar 

  • Schägger H, Pfeiffer K (2000) Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J 19:1777–1783

    Article  Google Scholar 

  • Schägger H, Pfeiffer K (2001) The ratio of oxidative phosphorylation complexes I–V in bovine heart mitochondria and the composition of respiratory chain supercomplexes. J Biol Chem 276:37861–37867

    Google Scholar 

  • Schneider H, Lemasters JJ, Hackenbrock CR (1982) Lateral diffusion of ubiquinone during electron transfer in phospholipid- and ubiquinone-enriched mitochondrial membranes. J Biol Chem 257:10789–10793

    CAS  Google Scholar 

  • Singer SJ, Nicolson GL (1976) The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    Article  Google Scholar 

  • Sousa JS, Mills DJ, Vonck J, Kühlbrandt W (2016) Functional asymmetry and electron flow in the bovine respirasome. eLife 5:e21290

    Article  CAS  Google Scholar 

  • Stoner CD (1984) Steady-state kinetics of the overall oxidative phosphorylation reaction in heart mitochondria. Determination of the coupling relationships between the respiratory reactions and miscellaneous observations concerning rate-limiting steps. J Bioenerg Biomembr 16:115–141

    Article  CAS  Google Scholar 

  • Sun F, Huo X, Zhai Y, Wang A, Xu J, Su D, Bartlam M, Rao Z (2005) Crystal structure of mitochondrial respiratory membrane protein complex II. Cell 121:1043–1057

    Article  CAS  Google Scholar 

  • Szarkowska L (1966) The restoration of DPNH oxidase activity by coenzyme Q (ubiquinone). Arch Biochem Biophys 113:519–525

    Article  CAS  Google Scholar 

  • Wittig I, Schägger H (2005) Advantages and limitations of clear-native PAGE. Proteomics 5:4338–4346

    Article  CAS  Google Scholar 

  • Wu M, Gu J, Guo R, Huang Y, Yang M (2016) Structure of mammalian respiratory supercomplex I1III2IV1. Cell 167:1598–1609

    Article  CAS  Google Scholar 

  • Yano N, Muramoto K, Shimada A, Takemura S, Baba J, Fujisawa H, Mochizuki M, Shinzawa-Itoh K, Yamashita E, Tsukihara T, Yoshikawa S (2016) The Mg2+-containing water cluster of mammalian cytochrome c oxidase collects four pumping proton equivalents in each catalytic cycle. J Biol Chem 291:23882–23894

    Article  CAS  Google Scholar 

  • Zhou A, Rohou A, Schep DG, Bason JV, Montgomery MG, Walker JE, Grigorieff N, Rubinstein JL (2015) Structure and conformational states of the bovine mitochondrial ATP synthase by cryo-EM. eLife 4:e10180

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Lenaz.

Ethics declarations

Conflict of interest

The author declare that no conflict of interest exists.

Additional information

This paper belongs to a series of peer-reviewed contributions coordinated by Guest Editor Ferdinando Palmieri on the theme “Current topics in biology”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lenaz, G., Tioli, G., Falasca, A.I. et al. Coenzyme Q and respiratory supercomplexes: physiological and pathological implications. Rend. Fis. Acc. Lincei 29, 383–395 (2018). https://doi.org/10.1007/s12210-018-0689-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-018-0689-4

Keywords

Navigation