Skip to main content

Advertisement

Log in

Performance of heat transport systems: least square method generated correlations of non-dimensional variables

  • Original Article
  • Published:
Energy Efficiency Aims and scope Submit manuscript

Abstract

Waste heat and renewable energy are increasingly being recognized as important sources of heat for district heating systems and for industrial clients, and as a means to reduce fossil fuel consumption. One of the most important challenges of using this heat is to transport it from the source to the load in an efficient manner. The objective of this paper is to establish explicit relations between the performance and the essential design variables of a system that includes a heat source, a heat transport sub-system, and a heat load. For this purpose we have used dimensional analysis, a factorial design of experiment methodology with the least square method and obtained linear correlations between two performance indicators (the system effectiveness and its exergy efficiency) and non-dimensional groups which combine the physical and operational characteristics of the system. It has also been shown that the economic desirability of the system as measured by the Internal Rate of Return increases linearly with the system effectiveness. A sensibility analysis has determined the non-dimensional groups which have the most important effect on each performance indicator. The obtained correlations have been applied to solve the following two design problems: (1) find the optimum values of design parameters such as the pipe insulation thickness and the mass flow rate of the heat transport fluid in order to maximize the exergy efficiency of the system and (2) find the optimum distribution of a fixed total thermal conductance in order to maximize the system effectiveness and/or its exergy efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

A, B:

Vectors of unknown coefficients in Eqs. 20a and 20b

C n :

Cash flows ($/year)

C p :

Specific heat (kJ·kg−1·K−1)

D 1, D 2 :

Inside and outside diameters of closed loop pipes (m)

D 3 :

Diameter of pipe insulation (m)

i :

Annual rate of increase in the price of energy

I, J :

Number of variables, dimensions in Pi theorem

k :

Thermal conductivity (W·m−1·K−1)

L :

Distance between heat source and heat load (m)

M :

Number of exact results used to calculate the coefficients in Eqs. 20a and 20b

MRE:

Mean relative error (%)

:

Mass flow rate (kg/s)

N :

Number of periods

n :

Periodicity of revenues

P :

Cost of energy ($/kWh)

R :

Thermal resistance (kW)

r :

Internal rate of return (%)

S :

Sum of squared residuals (%)

T :

Temperature (K)

T*:

T* = (T − Tenv)/(Th,in − Tenv)

Tenv**:

Tenv** = Tenv/(Th,in − Tenv)

:

Rate of heat transfer (kW)

UA:

Thermal conductance of heat exchanger (kW/K)

α, β:

Coefficients in Eqs. 20a and 20b

ζ:

Function defined by Eq. 26a

μ:

Function defined by Eq. 26c

0:

Dead state

1, 2, …:

Quantities defined in Fig. 1

c:

Cold or load side

env:

Environment

h:

Hot or source side

in:

Heat exchanger inlet

ins:

Insulation

m:

Metal

out:

Heat exchanger outlet

t:

Transport fluid

References

  • Atkins, M. J., Walmsley, M. R. W., & Neale, J. R. (2012). Process integration between individual plants at a large dairy factory by the application of heat recovery loops and transient stream analysis. Journal of Cleaner Production, 34, 21–28.

    Article  Google Scholar 

  • Bejan, A. (2016). Advanced engineering thermodynamics (4th ed.). Hoboken: Wiley 746 pages.

    Book  Google Scholar 

  • Buckingham, E. (1914). On physically similar systems; illustrations of the use of dimensional equations. Physical Reviewv, 4(4), 345–376.

    Article  Google Scholar 

  • Byun, S. J., Park, H. S., Yi, S. J., Song, C. H., Choi, Y. D., Lee, S. H., & Shin, J. K. (2015). Study on the optimal heat supply control algorithm for district heating distribution network in response to outdoor air temperature. Energy, 86, 247–256.

    Article  Google Scholar 

  • Chew, K. H., Klemes, J. J., Wan Alwi, S. R., & Manan, Z. A. (2013). Industrial implementation issues of Total site heat integration. Applied Thermal Engineering, 61, 17–25.

    Article  Google Scholar 

  • Curtis, W. D., Logan, J. D., & Parker, W. A. (1982). Dimensional analysis and the pi theorem. Linear Algebra and its Applications, 47, 117–126.

    Article  MathSciNet  MATH  Google Scholar 

  • Fang, H., Xia, J., Zhu, K., Su, Y., & Jiang, Y. (2013). Industrial waste heat utilization for low temperature district heating. Energy Policy, 62, 236–246.

    Article  Google Scholar 

  • Fang, H., Xia, J., & Jiang, Y. (2015). Key issues and solutions in a district heating system using low-grade industrial waste heat. Energy, 86, 589–602.

    Article  Google Scholar 

  • García, D., González, M. A., Prieto, J. I., Herrero, S., López, S., Mesonero, I., & Villasante, C. (2014). Characterisation of the power and efficiency of Stirling engine subsystems. Applied Energy, 121, 51–63.

    Article  Google Scholar 

  • Gong, G., Tang, J., Lv, D., & Wang, H. (2013). Research on frost formation in air source heat pump at cold-moist conditions in central-South China. Applied Energy, 2013, 571–581.

    Article  Google Scholar 

  • Gosselin, L., Tye-Gingras, M., & Mathieu-Potvin, F. (2009). Review of utilization of genetic algorithms in heat transfer problems. International Journal of Heat and Mass Transfer, 52, 2169–2188.

    Article  MATH  Google Scholar 

  • Hassani, S., Saidur, R., Mekhilef, S., & Hepbasli, A. (2015). A new correlation for predicting the thermal conductivity of nanofluids using dimesional analysis. International Journal of Heat and Mass Transfer, 90, 121–130.

    Article  Google Scholar 

  • Hjartarson, H., Maack, R., & Johannesson, S. (2005). Húsavik energy multiple use of geothermal energy. GHC Bulletin, 7–13 http://www.oit.edu/docs/default-source/geoheat-center-documents/quarterly-bulletin/vol-26/26-2/26-2-art3.pdf?sfvrsn=4. Accessed 15 August 2018

  • Islam, M. F., & Lye, L. M. (2009). Combined use of dimensional analysis and modern experimental design methodologies in hydrodynamics experiments. Ocean Engineering, 36, 237–247.

    Article  Google Scholar 

  • Kavvadias, K. C., & Quoilin, S. (2018). Exploiting waste heat potential by long distance heat transmission: Design considerations and techno-economic assessment. Applied Energy, 216, 452–465.

    Article  Google Scholar 

  • Keçebas, A., & Yabanova, I. (2013). Economic analysis of exergy efficiency based control strategy for geothermal district heating system. Energy Conversion and Management, 73, 1–9.

    Article  Google Scholar 

  • Klein, S. A., & Alvardo, F. L. (2001). EES-engineering equation solver for Microsoft windows operating systems, version 6.160. Madison: F-Chart Software.

    Google Scholar 

  • Kwon, O., Cha, D., & Park, C. (2013). Performance evaluation of a two-stage compression heat-pump system for district heating using waste heat. Energy, 57, 375–381.

    Article  Google Scholar 

  • Lee, H. (2013). Optimal design of thermoelectric devices with dimensional analysis. Applied Energy, 106, 79–88.

    Article  Google Scholar 

  • Li, M., & Zhao, B. (2016). Analytical thermal efficiency of medium-low temperature organic Rankine cycles derived from entropy-generation analysis. Energy, 106, 121–130.

    Article  Google Scholar 

  • Lin, J. H., Huang, C. Y., & Su, C. C. (2007). Dimensional analysis for the heat transfer characteristics in the corrugated channels of plate heat exchangers. International Communications in Heat and Mass Transfer, 34, 304–312.

    Article  Google Scholar 

  • Munson, B. R., Young, D. F., & Okiishi, T. H. (1994). Fundamentals of fluid mechanics (2nd ed.). New York: Wiley 893 pages.

    MATH  Google Scholar 

  • National Dairy Council of Canada (1998). Guide sur les possibilités d'accroître l'efficacité énergétique dans l'industrie de transformation de produits laitiers, 58 pages.

  • Park, C. S. (2009). Analyse économique en ingénierie, 2ème édition, Éditions du renouveau pédagogique Inc. (ERPI), Saint-Laurent Montréal QC Canada, French adaptation by: Soucy G., Yargeau, V., Grenon, M., 1080 pages.

  • Poirier R., Sorin M., Galanis N. (2016). Waste Heat Recovery and Transport Systems: Thermodynamic and Economic Evaluation. In: Proceedings of the 29th International Conference on Efficiency, Cost, Optimisation, Simulation and Environmental Impact of Energy Systems (ECOS).

  • Prato, A. P., Strobino, F., Broccardo, M., & Giusino, L. P. (2012). Integrated management of cogeneration plants and district heating networks. Applied Energy, 97, 590–600.

    Article  Google Scholar 

  • Quoilin, S., Lemort, V., & Lebrun, J. (2010). Experimental study and modeling of an organic Rankine cycle using scroll expander. Applied Energy, 87, 1260–1268.

    Article  Google Scholar 

  • Qureshi, B. A., & Zubair, S. M. (2011). Performance degradation of a vapor compression refrigeration system under fouled conditions. International Journal of Refrigeration, 34, 1016–1027.

    Article  Google Scholar 

  • Qureshi, B. A., & Zubair, S. M. (2014). Predicting the impact of heat exchanger fouling in refrigeration systems. International Journal of Refrigeration, 44, 116–124.

    Article  Google Scholar 

  • Qureshi, B. A., & Zubair, S. M. (2016). Predicting the impact of heat exchanger fouling in power systems. Energy, 107, 595–602.

    Article  Google Scholar 

  • Strang, G. (2006). Linear algebra and its applications (4th ed.). Pacific Grove: Thomson Brooks/Cole 487 pages.

    MATH  Google Scholar 

  • Stricker Associates Inc. (2006). Market study on waste heat and requirements for cooling and refrigeration in Canadian industry, Natural Resources Canada.

  • Svensson, I.-L., Jönsson, J., Berntsson, T., & Moshfegh, B. (2008). Excess heat from Kraft pulp mills: Trade-offs between internal and external use in the case of Sweden—Part 1: Methodology. Energy Policy, 36, 4178–4185.

    Article  Google Scholar 

  • Tan, M., & Keçebas, A. (2014). Thermodynamic and economic evaluations of a geothermal district heating system using advanced exergy-based methods. Energy Conversion and Management, 77, 504–513.

    Article  Google Scholar 

  • U.S. Dept. of Energy (2008). Waste heat recovery: Technology and opportunities in U.S. industry, Prepared by BCS Inc. http://www1.eere.energy.gov/manufacturing/intensiveprocesses/pdfs/waste_heat_recovery.pdf. Accessed 15 August 2018

  • Wang, C., Gong, G., Su, H., & Yu, C. W. (2015). Dimensionless and thermodynamic modelling of integrated photovoltaics–air source heat pump systems. Solar Energy, 118, 175–185.

    Article  Google Scholar 

  • White, F. M. (2008). Fluid mechanics (6th ed.). Crawfordsville: McGraw-Hill 864 pages.

    Google Scholar 

  • Yang, D., & Li, P. (2015). Dimensionless design approach, applicability and energy performance of stack-based hybrid ventilation for multi-story buildings. Energy, 93, 128–140.

    Article  Google Scholar 

Download references

Acknowledgements

This project is a part of the Collaborative Research and Development (CRD) Grants Program at “Université de Sherbrooke.” The authors acknowledge the support of the Natural Sciences and Engineering Research Council of Canada, Hydro Québec, Rio Tinto Alcan, and CanmetENERGY Research Center of Natural Resources Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Sorin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

The dimensional equations modeling the system are

$$ \mathrm{Q}\dot {}_{\mathrm{h}}={\dot{\mathrm{m}}}_{\mathrm{h}}{\mathrm{C}}_{\mathrm{ph}}\left({\mathrm{T}}_{\mathrm{h},\mathrm{in}}-{\mathrm{T}}_{\mathrm{h},\mathrm{out}}\right)={\dot{\mathrm{m}}}_{\mathrm{t}}{\mathrm{C}}_{\mathrm{pt}}\left({\mathrm{T}}_1-{\mathrm{T}}_4\right) $$
(29)
$$ {\dot{\mathrm{m}}}_{\mathrm{h}}{\mathrm{C}}_{\mathrm{ph}}\left({\mathrm{T}}_{\mathrm{h},\mathrm{in}}-{\mathrm{T}}_{\mathrm{h},\mathrm{out}}\right)={\mathrm{UA}}_{\mathrm{h}}\left[\left({\mathrm{T}}_{\mathrm{h},\mathrm{in}}-{\mathrm{T}}_1\right)-\left(\ {\mathrm{T}}_{\mathrm{h},\mathrm{out}}-{\mathrm{T}}_4\right)\right]/\ln \left[\left({\mathrm{T}}_{\mathrm{h},\mathrm{in}}-{\mathrm{T}}_1\right)/\left(\ {\mathrm{T}}_{\mathrm{h},\mathrm{out}}-{\mathrm{T}}_4\right)\right] $$
(30)
$$ {\dot{\mathrm{m}}}_{\mathrm{t}}{\mathrm{C}}_{\mathrm{pt}}\left({\mathrm{T}}_1-{\mathrm{T}}_2\right)\approx \left[\left({\mathrm{T}}_1+{\mathrm{T}}_2\right)/2-{\mathrm{T}}_{\mathrm{env}}\right]/\left({\mathrm{R}}_{\mathrm{m}}+{\mathrm{R}}_{\mathrm{ins}}\right) $$
(31)
$$ {\mathrm{R}}_{\mathrm{m}}=\ln \left({\mathrm{D}}_2/{\mathrm{D}}_1\right)/\left({2\uppi \mathrm{k}}_{\mathrm{m}}\mathrm{L}\right) $$
(32)
$$ {\mathrm{R}}_{\mathrm{ins}}=\ln \left({\mathrm{D}}_3/{\mathrm{D}}_2\right)/\left({2\uppi \mathrm{k}}_{\mathrm{ins}}\mathrm{L}\right) $$
(33)
$$ \mathrm{Q}\dot {}_{\mathrm{c}}={\dot{\mathrm{m}}}_{\mathrm{c}}{\mathrm{C}}_{\mathrm{pc}}\left({\mathrm{T}}_{\mathrm{c},\mathrm{out}}-{\mathrm{T}}_{\mathrm{c},\mathrm{in}}\right)={\dot{\mathrm{m}}}_{\mathrm{t}}{\mathrm{C}}_{\mathrm{pt}}\left({\mathrm{T}}_2-{\mathrm{T}}_3\right) $$
(34)
$$ {\dot{\mathrm{m}}}_{\mathrm{t}}{\mathrm{C}}_{\mathrm{pt}}\left({\mathrm{T}}_2-{\mathrm{T}}_3\right)={\mathrm{UA}}_{\mathrm{c}}\left[\left({\mathrm{T}}_2-{\mathrm{T}}_{\mathrm{c},\mathrm{out}}\right)-\left({\mathrm{T}}_3-{\mathrm{T}}_{\mathrm{c},\mathrm{in}}\right)\right]/\ln \left[\left({\mathrm{T}}_2-{\mathrm{T}}_{\mathrm{c},\mathrm{out}}\right)/\left({\mathrm{T}}_3-{\mathrm{T}}_{\mathrm{c},\mathrm{in}}\right)\right] $$
(35)
$$ {\dot{\mathrm{m}}}_{\mathrm{t}}{\mathrm{C}}_{\mathrm{pt}}\left({\mathrm{T}}_3-{\mathrm{T}}_4\right)\approx \left[\left({\mathrm{T}}_3+{\mathrm{T}}_4\right)/2-{\mathrm{T}}_{\mathrm{env}}\right]/\left({\mathrm{R}}_{\mathrm{m}}+{\mathrm{R}}_{\mathrm{ins}}\right) $$
(36)

These ten equations involve 23 dimensional variables; 13 can be classified as input parameters (ṁhCph, ṁtCpt, ṁcCpc, UAh, UAc, kmL, kinsL, D3, D2, D1, Th,in, Tc,in, Tenv) and 10 as dependent quantities (Q̇h, Q̇c, Rm, Rins, T1, T2, T3, T4, Tc,out, Th,out). The latter quantities can be calculated for any combination of the 13 input parameters by solving the above system of ten algebraic equations. Among the dependent quantities the heat transfer rate Q̇c is of particular interest since it represents the useful effect of the system. The relation between Q̇c and the input parameters is

$$ \mathrm{Q}\dot {}_{\mathrm{c}}=\mathrm{f}\ \left({\dot{\mathrm{m}}}_{\mathrm{h}}{\mathrm{C}}_{\mathrm{ph}},{\dot{\mathrm{m}}}_{\mathrm{t}}{\mathrm{C}}_{\mathrm{pt}},{\dot{\mathrm{m}}}_{\mathrm{c}}{\mathrm{C}}_{\mathrm{pc}},{\mathrm{UA}}_{\mathrm{h}},{\mathrm{UA}}_{\mathrm{c}},{\mathrm{k}}_{\mathrm{m}}\mathrm{L},{\mathrm{k}}_{\mathrm{ins}}\mathrm{L},{\mathrm{D}}_{3,}\ {\mathrm{D}}_2,{\mathrm{D}}_1,{\mathrm{T}}_{\mathrm{h},\mathrm{in}},{\mathrm{T}}_{\mathrm{c},\mathrm{in}},{\mathrm{T}}_{\mathrm{env}}\right) $$
(37)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poirier, R.H., Galanis, N. & Sorin, M. Performance of heat transport systems: least square method generated correlations of non-dimensional variables. Energy Efficiency 12, 1491–1508 (2019). https://doi.org/10.1007/s12053-018-9757-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12053-018-9757-y

Keywords

Navigation