Skip to main content

Advertisement

Log in

Dynamic modeling and simulation of a water supply system with applications for improving energy efficiency

  • Review Article
  • Published:
Energy Efficiency Aims and scope Submit manuscript

Abstract

This paper presents the dynamic simulation of an urban water supply system based on a phenomenological model of distributed parameters capable of predicting the hydraulic behavior and the energy consumption. This case study involves a segment of the supply and distribution water system in the city of Salvador (Brazil), and the analysis focuses on the pumping station, water mainline, and distribution tanks. The current operation of the system is performed through heuristic rules based on expert knowledge, and the control of discharge flow pumps is essentially on/off. The comparison between simulation results and measured data shows that the model describes the hydraulic network satisfactorily as it is able to predict the transient behavior of the flow along the water main line. Considering the high capacity and dimensions together with the intrinsic dynamic features (disturbances caused by the maneuvers in the pump operation and variable demand throughout the day), the use of dynamic modeling for the case studied is really needed for the simulation results to be consistent. Furthermore, the dynamic model and strategy used enables a careful analysis of the water supply system and represents a potential tool for the evaluation of control strategies and energy efficiency. The results show the potential gain in energy efficiency with the inclusion of frequency converters in the pumping system without considerable changes in the level of reservoirs and ensuring the total service demand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abe, D. S., et al. (2005). Carbon gas cycling in these sediments of Serra Da Mesa and Manso reservoirs, Central Brazil. Verhandlungen–Internationale Vereinigungfür Theoretischeund Angewandte Limnologie, 29, 567–572.

    Google Scholar 

  • Afshar, M. H., & Rohani, M. (2008). Water hammer simulation by implicit method of characteristic. International Journal of Pressure Vessels and Piping, 85(12), 851–859.

    Article  Google Scholar 

  • Barán, B., Lücken, C. V., & Sotelo, A. (2005). Multi-objective pump scheduling optimization using evolutionary strategies. Journal of Advances in Engineering Software, 36(1), 39–47.

    Article  MATH  Google Scholar 

  • Beckwith, S. F., & Wong, K. P. (1995). A genetic algorithm approach for electric pump scheduling in water supply system. In Proc. of the IEEE Conference on Evolutionary Computation (pp. 21–26). Australia: Perth.

    Google Scholar 

  • Bird, R. B., Stewart, W. E., & Lightfoot, E. N. (1960). Transport phenomena. New York: Wiley.

    Google Scholar 

  • Bortoni, E. A., Almeida, R. A., & Viana, A. N. C. (2008). Optimization of parallel variable-speed-driven centrifugal pumps operation. Energy Efficiency, 1(3), 167–173.

    Article  Google Scholar 

  • Boulos, P. F., et al. (2005). Hydraulic transient guidelines for protecting water distribution systems. Journal of the American Water Works Association, 97(5), 111–124.

    Google Scholar 

  • Bounds, P., Kahler, J., & Ulanicki, B. (2006). Efficient energy management of a large-scale water supply system. Journal of Civil Engineering and Environmental Systems, 23(3), 209–220.

    Article  Google Scholar 

  • BRASIL (Ministério de Minas e Energia). (2011). Balanço Energético Nacional – BEN. Brasília: MME.

    Google Scholar 

  • Brion, L. M., & Mays, L. W. (1991). Methodology for optimal operation of pumping stations in water distribution systems. Journal of Hydraulic Engineering, 117(11), 1551–1569.

    Article  Google Scholar 

  • Carravetta, A., et al. (2012). Energy production in water distribution networks: a PAT design strategy. Water Resources Management, 26(13), 3947–3959.

    Article  Google Scholar 

  • Chase, D. V., and Ormsbee, L. E. (1989). Optimal pump operation of water distribution system with multiple storage tanks. In: Proc. Conf. on Water Resour. Plann. Manag., 733–736.

  • Chaudhry, M. H. (1979). Applied hydraulic transients. New York: Reinhold.

    Google Scholar 

  • Chen-Shan, L. (2006). An efficient backward group preserving scheme for the backward in time Burger’s equation. Computer Modeling in Engineering and Science, 12, 55–65.

    Google Scholar 

  • Christoph, T. S., & Waymond, R. S. (2002). On the stability of the FDTD algorithm for elastic media at a material interface. IEEE Transactions on Geoscience and Remote Sensing, 40(2), 474–481.

    Article  Google Scholar 

  • COELBA (Companhia Elétrica do Estado da Bahia). (2011). Tabela de tarifa e preço final de energia elétrica. Salvador: COELBA.

    Google Scholar 

  • Coulbeck, B., & Orr, C. H. (1984). Optimized pumping in water supply systems. In Proc. of IFCA, IX Triennial World Congress (pp. 3175–3180). Hungary: Budapest.

    Google Scholar 

  • Coulbeck, B., et al. (1988). A hierarchical approach to optimized control of water distribution systems: part 1 decomposition. Journal of Optimal Control Applications and Methods, 9(1), 51–61.

    Article  MATH  MathSciNet  Google Scholar 

  • Demoyer, R., & Horowitz, L. (1975). A systems approach to water distribution modeling and control. Boston: Lexington.

    Google Scholar 

  • Ebacher, G., et al. (2011). Transient modeling of a full-scale distribution system: comparison with field data. Journal of Water Resources Planning and Management, 137(2), 173–182.

    Article  Google Scholar 

  • Fenghua, Z., Zhizhang, C., & Jiazong, Z. (1999). A finite-difference time-domain method without the courant stability conditions. IEEE Microwave and Guided Wave Letters, 9(11), 441–443.

    Article  Google Scholar 

  • Fleming, K. K., et al. (2006). Susceptibility of distribution systems to negative pressure transients. New York: American Water Works Association.

    Google Scholar 

  • Gupta, I., & Khanna, G. P. (1999). Genetic algorithm for optimization of water distribution systems. Environmental Modeling and Software, 14(5), 437–446.

    Article  Google Scholar 

  • Haddad, O., Afshar, A., & Mariño, M. A. (2006). Honey-bees mating optimization (HBMO) algorithm: a new heuristic approach for water resources optimization. Journal of Water Resources Planning and Management, 20(5), 661–680.

    Article  Google Scholar 

  • IEA (International Energy Agency). (2011). World energy outlook. Paris: OECD/IEA.

    Google Scholar 

  • Ismaier, A., & Schlücker, E. (2009). Fluid dynamic interaction between water hammer and centrifugal pumps. Nuclear Engineering and Design, 239, 3151–3154.

    Article  Google Scholar 

  • Izquierdo, J., & Iglesias, P. L. (2002). Mathematical modeling of hydraulic transients in simple systems. Journal of Mathematical and Computer Modeling, 35(7–8), 801–812.

    Article  MATH  MathSciNet  Google Scholar 

  • Jowitt, P. W., & Germanopoulos, G. (1992). Optimal pump scheduling in water-supply networks. Journal of Water Resources Planning and Management, 118(4), 406–422.

    Article  Google Scholar 

  • Kessler, A., & Shamir, U. (1989). Analysis of the linear programming gradient method for optimal design of water supply networks. Journal of Water Resources Research, 25(7), 1469–1480.

    Article  Google Scholar 

  • Kwon, H. J. (2007). Analysis of transient flow in a piping system. Journal of Civil Engineering, 11(4), 209–214.

    Google Scholar 

  • Lambeth, J., & Houston, J. (1991). Adjustable frequency drives saves energy. Water & Environmental Technologies, 3(5), 34.

    Google Scholar 

  • Lansey, K. E., & Awumah, K. (1994). Optimal pump operations considering pump switches. Journal of Water Resources Planning and Management, 120(1), 17–35.

    Article  Google Scholar 

  • Lansey, K. E., and Zhong, Q. (1990). A methodology for optimal control of pump station. In: Proc. Conf. on Water Resourc. Plann. Manage, 58–61.

  • Lansey, K. E., et al. (1989). Water distribution system design under uncertainties. Journal of Water Resources Planning and Management, 115(5), 630–645.

    Article  Google Scholar 

  • LeChevallier, M. W., et al. (2003). The potential for health risks from intrusion of contaminants into the distribution system from pressure transients. Journal of Water and Health, 1, 3–14.

    Google Scholar 

  • Lingireddy, S., & Wood, D. J. (1998). Improved operation of water distribution systems using variable-speed pumps. Journal of Energy Engineering, ASCE, 124(3), 90–103.

    Article  Google Scholar 

  • López-Ibáñez, M., Prasad, T. D., & Paechter, B. (2008). Ant colony optimization for optimal control of pumps in water distribution networks. Journal of Water Resources Planning and Management, 134(4), 337–346.

    Article  Google Scholar 

  • Maier, H. R., et al. (2003). Ant colony optimization for design of water distribution systems. Journal of Water Resources Planning and Management, 129(3), 200–209.

    Article  MathSciNet  Google Scholar 

  • Marques, C. A. X., et al. (2009). Efficiency control in a commercial counter flow wet cooling tower. Journal of Energy Conversion and Management, 50(11), 2843–2855.

    Article  MathSciNet  Google Scholar 

  • Mays, L. W. (2004). Water distribution systems handbook. New York: McGraw-Hill.

    Google Scholar 

  • Ormsbee, L. E., & Lansey, K. E. (1994). Optimal control of water supply pumping systems. Journal of Water Resources Planning and Management, 120(2), 237–252.

    Article  Google Scholar 

  • Ormsbee, L. E., et al. (1987). Techniques for improving energy efficiency at water supply pumping stations. Jackson: U.S. Army Engineer Waterways Experiment Station.

    Google Scholar 

  • Ormsbee, L. E., Walski, T. M., & Sharp, W. W. (1989). Methodology for improving pump operation efficiency. Journal of Water Resources Planning and Management, 115(2), 148–164.

    Article  Google Scholar 

  • Ozdemir, E. (2003). Energy conservation opportunities with a variable speed controller in a boiler house. Applied Thermal Engineering, 24(7), 981–993.

    Article  Google Scholar 

  • Pinto, J. C., & Lage, P. L. C. (2001). Mathematical methods in chemical engineering problems. Rio de Janeiro: COPPE/UFRJ.

    Google Scholar 

  • Quindry, G. E., Brill, E. D., & Liebman, J. C. (1981). Optimization of looped water distribution systems. Journal of Environmental Engineering, 107EE4, 665–679.

    Google Scholar 

  • Ramos, J. S., & Ramos, H. M. (2010). Multi-criterion optimization of energy management in drinking systems. Water Science and Technology: Water Supply, 10(2), 129–144.

    Google Scholar 

  • Ramos, H. M., Kenov, K. N., & Vieira, F. (2011). Environmentally friendly hybrid solutions to improve the energy and hydraulic efficiency in water supply systems. Energy for Sustainable Development, 15(4), 436–442.

    Article  Google Scholar 

  • Reis, L. F. R., et al. (2005). Multi-reservoir operation planning using hybrid genetic algorithm and linear programming: an alternative stochastic approach. Journal of Water Resources Management, 19(6), 831–848.

    Article  Google Scholar 

  • Sanks, R. L. (1998). Pumping stations—design and construction (2nd ed.). New York: Butterworth-Heinemann.

    Google Scholar 

  • Schiesser, W. E. (1991). The numerical method of lines: integration of partial differential equations. San Diego: Academic.

    MATH  Google Scholar 

  • Schittkowski, K. (1997). Parameter estimation in one-dimensional time-dependent partial differential equations. Optimization Methods and Software, 7(3–4), 165–210.

    Article  MATH  MathSciNet  Google Scholar 

  • Swamee, P. K., & Sharma, A. K. (2008). Design of water supply pipe networks. New Jersey: Wiley.

    Book  Google Scholar 

  • Tarquin, A. J., & Dowdy, J. (1989). Optimal pump operation in water distribution. Journal of Hydraulic Engineering, 115(2), 158–168.

    Article  Google Scholar 

  • Ulanicki, B., Kahler, J., & Coulbek, B. (2008). Modeling the efficiency and power characteristics for a pump group. Journal of Water Resources Planning and Management, 134(1), 88–93.

    Article  Google Scholar 

  • Vieira, F., & Ramos, H. M. (2008). Hybrid solution and pump-storage optimization in water supply system efficiency: a case study. Energy Policy, 36(1), 4142–4148.

    Article  Google Scholar 

  • Vieira, F., & Ramos, H. M. (2009). Optimization of the energy management in water supply systems. Water Science and Technology: Water Supply, 9(1), 59–65.

    Google Scholar 

  • Viholainen, J., et al. (2012). Energy-efficient control strategy for variable speed-driven parallel pumping systems. Energy Efficiency, 6(3), 495–509.

    Article  Google Scholar 

  • Vilela, O. C., & Fraidenraich, N. (2001). A methodology for the design of photovoltaic water supply systems. Progress in Photovoltaics: Research and Applications, 9(5), 349–361.

    Article  Google Scholar 

  • Walski, T. M. (1984). Analysis of water distribution systems. New York: Van Nostrand Reinhold.

    Google Scholar 

  • Wanakule, N., Mays, L. W., & Lasdon, L. S. (1986). Optimal management of large-scale aquifers: methodology and applications. Journal of Water Resources Research, 22(4), 447–465.

    Article  Google Scholar 

  • Wang, H., & Guo, W. (2010). ACO optimizing neural network for macroscopic water distribution system modeling. In Proc. International Conf. on Intelligent Computing and Cognitive Informatics (pp. 367–370). USA: Washington.

    Google Scholar 

  • Wood, D. J., et al. (2005). Numerical methods for modeling transient flow in distribution systems. Journal of the American Water Works Association, 97(7), 104–115.

    Google Scholar 

  • Worthington. (1988). Catálogo de bombas. Rio de Janeiro: Worthington do Brasil.

    Google Scholar 

  • Wylie, E. B., & Streeter, V. L. (1978). Fluid transients. New York: McGraw-Hill.

    Google Scholar 

  • Yu, G., Powell, R. S., & Sterling, M. J. H. (1994). Optimized pump scheduling in water distribution systems. Journal of Optimization Theory and Application, 83(3), 463–488.

    Article  MATH  MathSciNet  Google Scholar 

  • Zessler, U., & Shamir, U. (1989). Optimal operation of water distribution systems. Journal of Water Resources Planning and Management, 115(6), 735–752.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Magno Ferreira Diniz.

Appendix—Equation of motion from equation of thermal energy

Appendix—Equation of motion from equation of thermal energy

From the complete equation of energy that considers the rate of accumulation of internal and kinetic energy, it is possible to derive the equation of thermal energy (by analogy with the equation of mechanical energy) that only considers the rate of gain of internal energy (Bird et al. 1960). Then, for an infinitesimal element of fluid in one-dimensional flow, the following equation is valid:

$$ \rho \cdot \frac{Du}{Dt}=-\left(\nabla \cdot q\right)- p\cdot \left(\nabla \cdot v\right)-\left(\tau :\nabla v\right) $$
(A.1)

u is the internal energy per unit mass of fluid in the element (control volume), v is the local fluid velocity, p is the static pressure, τ is the stress tensor and q is the heat flux vector. Du/Dt is the substantial derivative (derivative following the fluid motion) of u. − (∇ ⋅ q) represents the rate of internal energy input by conduction (per unit volume), − p ⋅ (∇ ⋅ v) and − (τ : ∇v) represents reversible rate of internal energy increase by compression and irreversible rate of internal energy increase by viscous dissipation (friction loss), respectively, both per unit volume. Assuming incompressible flow, (∇ ⋅ v) = 0, and integrating Eq. A.1 over the control volume:

$$ {\displaystyle \underset{V}{\int}\rho \cdot \frac{Du}{Dt} dV}={\displaystyle \underset{V}{\int }-\left(\nabla \cdot q\right) dV}-{\displaystyle \underset{V}{\int}\left(\tau :\nabla v\right) dV} $$
(A.2)

Applying the Leibnitz formula for differentiating integral and equation of continuity,

$$ {\displaystyle \underset{V}{\int}\rho \cdot \frac{Du}{Dt} dV}={\displaystyle \underset{V}{\int }-\left(\nabla \cdot q\right) dV}-{\displaystyle \underset{V}{\int}\left(\tau :\nabla v\right) dV} $$
(A.3)

where dU/dt is the total time derivative, and U is the total internal energy in the system. An unsteady-state macroscopic energy balance, assuming no shaft work and that the time derivative of total potential energy is negligible, leads to Eq. A.4:

$$ \frac{dU}{dt}=-\varDelta \left[\left( u+\frac{p}{\rho}+\frac{1}{2}\cdot {\left\langle v\right\rangle}^2+ g\cdot z\right)\cdot w\right]+ Q-\frac{dK}{dt} $$
(A.4)

z is the quota, w is the mass rate of flow, 〈v〉 is the average velocity over conduit cross-section, Q is the net rate of heat added to the system, and K is the total kinetic energy in the system.

Using the Gauss divergence theorem:

$$ {\displaystyle \underset{V}{\int}\left(\nabla \cdot q\right) dV}={\displaystyle \underset{S}{\int}\left( n\cdot q\right) dS}= Q $$
(A.5)

Using Eqs. A.3, A.4, and A.5 in Eq. A.2:

$$ \varDelta \left[\left( u+\frac{p}{\rho}+\frac{1}{2}\cdot {\left\langle v\right\rangle}^2+ g\cdot z\right)\cdot w\right]+{\displaystyle \underset{V}{\int}\left(\tau :\nabla v\right) dV}+\frac{dK}{dt}=0 $$
(A.6)

Using Eq. 2 and expressing \( K={\displaystyle \underset{V}{\int}\frac{1}{2}\rho {v}^2 dV}\kern1em \mathrm{and}\kern0.75em {\displaystyle \underset{V}{\int}\left(\tau :\nabla v\right) dV}={\displaystyle \underset{V}{\int}\rho {\hat{E}}_v dV} \), where\( {\widehat{E}}_v \) denotes the friction loss per unit of mass rate flow:

$$ \varDelta \left[\left( u+ g\cdot H+\frac{1}{2}\cdot {\left\langle v\right\rangle}^2\right)\cdot w\right]+{\displaystyle \underset{V}{\int}\rho {\hat{E}}_v dV}+{\displaystyle \underset{V}{\int}\frac{\partial }{\partial t}\left(\frac{1}{2}\rho {v}^2\right) dV}=0 $$
(A.7)

For incompressible and isothermal flow, Δu = 0. The other net rate added can be expressed as volume integrals:

$$ \begin{array}{l}\varDelta \left[\left( g\cdot H+\frac{1}{2}\cdot {\left\langle v\right\rangle}^2\right)\cdot w\right]={\displaystyle \underset{S}{\int}\left( n\cdot gH\rho v\right) dS}+\frac{1}{2}{\displaystyle \underset{S}{\int}\left( n\cdot {\left\langle v\right\rangle}^2\rho v\right) dS}=\\ {}{\displaystyle \underset{V}{\int}\left(\nabla \cdot gH\rho v\right) dV}+\frac{1}{2}{\displaystyle \underset{V}{\int}\left(\nabla \cdot {\left\langle v\right\rangle}^2\rho v\right) dV}\end{array} $$
(A.8)

Replacing in Eq. A.7:

$$ {\displaystyle \underset{V}{\int}\left\{\left(\nabla \cdot gH\rho v\right)+\frac{1}{2}\left(\nabla \cdot {\left\langle v\right\rangle}^2\rho v\right)+\rho {\hat{E}}_v+\frac{\partial }{\partial t}\left(\frac{1}{2}\rho {v}^2\right)\right\} dV=0} $$
(A.9)

For an incompressible and one-dimensional flow, Eq. A.9 provides the following equation:

$$ g\frac{\partial H}{\partial x}+{v}_x\cdot \frac{\partial {v}_x}{\partial x}+\frac{\partial {v}_x}{\partial t}+\frac{{\widehat{E}}_v}{v_x}=0 $$
(A.10)

v x is the component of velocity in the x-direction.

The Eq. 6 is derived directly from Eq. A.10 considering that the term v x  ⋅ ∂v x /∂x is significantly smaller than the term ∂v x /∂t (Chaudhry 1979), using Darcy-Weisbach formula to compute the friction loss and writing Eq. A.10 in terms of volumetric flow (Q).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diniz, A.M.F., Fontes, C.H., Da Costa, C.A. et al. Dynamic modeling and simulation of a water supply system with applications for improving energy efficiency. Energy Efficiency 8, 417–432 (2015). https://doi.org/10.1007/s12053-014-9292-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12053-014-9292-4

Keywords

Navigation