Skip to main content
Log in

A note on stress rotations due to the 2004 Mw 9.2 Sumatra–Andaman megathrust earthquake

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

A Correction to this article was published on 02 February 2021

This article has been updated

Abstract

Here we study the evolution of stress and its rotations in the Sumatra–Andaman Subduction Zone (SASZ) after the 2004 Mw 9.2 megathrust earthquake, using moment tensor stress inversions. Models indicate returning of North Andaman stress regime to the inter-seismic oblique-compression, after a short stint of extension. Likewise, Little Andamans experience extension indicating a trench-ward guidance of extensional stresses. Similarly, Nicobar regime is presently normal-oblique, from early post-seismic reverse-oblique, and North Sumatra experiences pure-reverse regime. The influence of the Wharton Basin stress field and 2012 earthquakes on the SASZ fore-arc deformation is also probed. A near-complete co-seismic stress-relief is observed at Nicobar, followed by North Sumatra and Little Andaman. Co-seismic and post-seismic model comparisons indicate strong correlation with zones of co-seismic stress relief and regions of rapid post-seismic reloading. The North Andaman shows a northward compressive shear than the margin-normal component of subduction, as evident from prominent oblique stress regime with lower co-seismic stress relief and lack of post-seismic back rotations. At Andaman Spreading Ridge (ASR), transition from oblique to extensional stress indicates lateral shear to back-arc spreading enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Change history

  • 02 February 2021

    First author’s (K Silpa) primary affiliation (Article ID 187) in the article published was incorrect.

References

  • Aderhold K and Abercrombie R E 2016 Seismotectonics of a diffuse plate boundary: Observations off the Sumatra–Andaman trench; J. Geophys. Res.: Solid Earth 121(5) 3462–3478.

    Article  Google Scholar 

  • Ammon C J, Ji C, Thio H K, Robinson D, Ni S, Hjorleifsdottir V, Kanamori H, Lay T, Das S and Helmberger D et al. 2005 Rupture process of the 2004 Sumatra–Andaman earthquake; Science 308(5725) 1133–1139.

    Article  Google Scholar 

  • Ammon C J, Kanamori H and Lay T 2008 A great earthquake doublet and seismic stress transfer cycle in the central Kuril islands; Nature 451(7178) 561.

    Article  Google Scholar 

  • Andrade V and Rajendran K 2011 Intraplate response to the great 2004 Sumatra–Andaman earthquake: A study from the Andaman segment; Bull. Seismol. Soc. Am. 101(2) 506–514.

    Article  Google Scholar 

  • Angelier J 1984 Tectonic analysis of fault slip data sets; J. Geophys. Res.: Solid Earth 89(B7) 5835–5848.

    Article  Google Scholar 

  • Argus D F, Gordon R G and DeMets C 2011 Geologically current motion of 56 plates relative to the no-net-rotation reference frame; Geochem. Geophys. Geosyst. 12(11).

  • Arnold R and Townend J 2007 A Bayesian approach to estimating tectonic stress from seismological data; Geophys. J. Int. 170(3) 1336–1356.

    Article  Google Scholar 

  • Astiz L, Lay T, Kanamori H 1988 Large intermediate-depth earthquakes and the subduction process; Phys. Earth Planet. Inter. 53(1–2) 80–166.

    Article  Google Scholar 

  • Banerjee P, Pollitz F, Nagarajan B and Burgmann R 2007 Coseismic slip distributions of the 26 December 2004 Sumatra–Andaman and 28 March 2005 Nias earthquakes from GPS static offsets; Bull. Seismol. Soc. Am. 97(1A) S86–S102.

    Article  Google Scholar 

  • Bird P 2003 An updated digital model of plate boundaries; Geochem. Geophys. Geosyst. 4(3).

  • Bohnhoff M, Grosser H and Dresen G 2006 Strain partitioning and stress rotation at the north Anatolian fault zone from aftershock focal mechanisms of the 1999 Izmit Mw = 7.4 earthquake; Geophys. J. Int. 166(1) 373–385.

  • Bradley K E, Feng L, Hill E M, Natawidjaja D and Sieh K 2017 Implications of the diffuse deformation of the Indian ocean lithosphere for slip partitioning of oblique plate convergence in Sumatra; J. Geophys. Res.: Solid Earth 122(1) 572–591.

    Article  Google Scholar 

  • Briggs R W, Sieh K, Meltzner A J, Natawidjaja D, Galetzka J, Suwargadi B, Hsu Y J, Simons M, Hananto N and Suprihanto I et al. 2006 Deformation and slip along the Sunda megathrust in the great 2005 Nias–Simeulue earthquake; Science 311(5769) 1897–1901.

  • Chiba K, Iio Y and Fukahata Y 2012 Detailed stress fields in the focal region of the 2011 off the Pacific coast of Tohoku earthquake – Implication for the distribution of moment release; Earth Planets Space 64(12) 10.

    Article  Google Scholar 

  • Chlieh M, Avouac J P, Hjorleifsdottir V, Song T R A, Ji C, Sieh K, Sladen A, Hebert H, Prawirodirdjo L and Bock Y et al. 2007 Coseismic slip and afterslip of the great Mw 9.15 Sumatra–Andaman earthquake of 2004; Bull. Seismol. Soc. Am. 97(1A) S152–S173.

  • Cloetingh S and Wortel R 1986 Stress in the Indo-Australian plate; Tectonophys. 132(1–3) 49–67.

    Article  Google Scholar 

  • Coblentz D D, Zhou S, Hillis R R, Richardson R M, Sandiford M 1998 Topography, boundary forces, and the Indo-Australian intraplate stress field; J. Geophys. Res.: Solid Earth 103(B1) 919–931.

    Article  Google Scholar 

  • Craig T J and Copley A 2018 Forearc collapse, plate flexure, and seismicity within the downgoing plate along the sunda arc west of Sumatra; Earth Planet. Sci. Lett. 484 81–91.

    Article  Google Scholar 

  • Curray J R 2005 Tectonics and history of the Andaman sea region; J. Asian Earth Sci. 25(1) 187–232.

    Article  Google Scholar 

  • Delescluse M, Chamot-Rooke N, Cattin R, Fleitout L, Trubienko O and Vigny C 2012 April 2012 intra-oceanic seismicity off Sumatra boosted by the Banda-aceh megathrust; Nature 490(7419) 240.

    Article  Google Scholar 

  • Dewey J W, Choy G, Presgrave B, Sipkin S, Tarr A C, Benz H, Earle P and Wald D 2007 Seismicity associated with the Sumatra–Andaman islands earthquake of 26 December 2004; Bull. Seismol. Soc. Am. 97(1A) S25–S42.

    Article  Google Scholar 

  • Diehl T, Waldhauser F, Cochran J R, Kamesh Raju K, Seeber L, Schaff D and Engdahl E 2013 Back-arc extension in the Andaman sea: Tectonic and magmatic processes imaged by high-precision teleseismic double-difference earthquake relocation; J. Geophys. Res.: Solid Earth 118(5) 2206–2224.

    Article  Google Scholar 

  • Ekström G, Nettles M, Dziewoski A M 2012 The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes; Phys. Earth Planet. Int. 200 1–9.

  • Engdahl E R, Villasenor A, DeShon H R and Thurber C H 2007 Teleseismic relocation and assessment of seismicity (1918–2005) in the region of the 2004 Mw 9.0 Sumatra–Andaman and 2005 Mw 8.6 Nias island great earthquakes; Bull. Seismol. Soc. Am. 97(1A) S43–S61.

  • Fitch T J 1972 Plate convergence, transcurrent faults, and internal deformation adjacent to southeast Asia and the western Pacific; J. Geophys. Res. 77(23) 4432–4460.

    Article  Google Scholar 

  • Frohlich C 1992 Triangle diagrams: Ternary graphs to display similarity and diversity of earthquake focal mechanisms; Phys. Earth Planet. Int. 75(1–3) 193–198.

    Article  Google Scholar 

  • Frohlich C 2001 Display and quantitative assessment of distributions of earthquake focal mechanisms; Geophys. J. Int. 144(2) 300–308.

    Article  Google Scholar 

  • Frohlich C and Davis S D 1999 How well constrained are well-constrained t, b, and p axes in moment tensor catalogs?; J. Geophys. Res.: Solid Earth 104(B3) 4901–4910.

    Article  Google Scholar 

  • Gahalaut V, Jade S, Catherine J, Gireesh R, Ananda M, Kumar P, Narsaiah M, Jafri S, Ambikapathy A and Bansal A et al. 2008 GPS measurements of postseismic deformation in the Andaman-Nicobar region following the giant 2004 Sumatra–Andaman earthquake; J. Geophys. Res.: Solid Earth 113(B8).

  • Gahalaut V, Subrahmanyam C, Kundu B, Catherine J and Ambikapathy A 2010 Slow rupture in Andaman during 2004 Sumatra–Andaman earthquake: A probable consequence of subduction of 90E ridge; Geophys. J. Int. 180(3) 1181–1186.

    Article  Google Scholar 

  • Gephart J W 1990 Stress and the direction of slip on fault planes; Tectonics 9(4) 845–858.

    Article  Google Scholar 

  • Gephart J W and Forsyth D W 1984 An improved method for determining the regional stress tensor using earthquake focal mechanism data: Application to the San Fernando earthquake sequence; J. Geophys. Res.: Solid Earth 89(B11) 9305–9320.

    Article  Google Scholar 

  • Gowd T, Rao S S and Gaur V 1992 Tectonic stress field in the Indian subcontinent; J. Geophys. Res.: Solid Earth 9(B8) 11,879–11,888.

    Article  Google Scholar 

  • Gunawan E, Sagiya T, Ito T, Kimata F, Tabei T, Ohta Y, Meilano I, Abidin H Z, Nurdin I and Sugiyanto D et al. 2014 A comprehensive model of postseismic deformation of the 2004 Sumatra–Andaman earthquake deduced from GPS observations in northern Sumatra; J. Asian Earth Sci. 88 218–229.

    Article  Google Scholar 

  • Hardebeck J L 2012 Coseismic and postseismic stress rotations due to great subduction zone earthquakes; Geophys. Res. Lett. 39(21).

  • Hardebeck J L 2015 Stress orientations in subduction zones and the strength of subduction megathrust faults; Science 349(6253) 1213–1216.

    Article  Google Scholar 

  • Hardebeck J L and Hauksson E 2001 Crustal stress field in southern California and its implications for fault mechanics; J. Geophys. Res.: Solid Earth 106(B10) 21,859–21,882.

    Article  Google Scholar 

  • Hardebeck J L and Michael A J 2006 Damped regional-scale stress inversions: Methodology and examples for southern California and the Coalinga aftershock sequence; J. Geophys. Res.: Solid Earth 111(B11).

  • Hardebeck J L and Okada T 2018 Temporal stress changes caused by earthquakes: A review; J. Geophys. Res.: Solid Earth 123(2) 1350–1365.

    Article  Google Scholar 

  • Hasegawa A, Yoshida K and Okada T 2011 Nearly complete stress drop in the 2011 Mw 9.0 off the Pacific coast of Tohoku earthquake; Earth Planets Space 63(7) 703–707.

  • Hasegawa A, Yoshida K, Asano Y, Okada T, Iinuma T and Ito Y 2012 Change in stress field after the 2011 great Tohoku-oki earthquake; Earth Planet. Sci. Lett. 355 231–243.

    Article  Google Scholar 

  • Hauksson E 1994 State of stress from focal mechanisms before and after the 1992 Landers earthquake sequence; Bull. Seismol. Soc. Am. 84(3) 917–934.

    Google Scholar 

  • Helffrich G R 1997 How good are routinely determined focal mechanisms? Empirical statistics based on a comparison of Harvard, USGS and ERI moment tensors; Geophys. J. Int. 131(3) 741–750.

    Article  Google Scholar 

  • Hughes K L, Masterlark T and Mooney W D 2010 Poroelastic stress-triggering of the 2005 M 8.7 Nias earthquake by the 2004 M 9.2 Sumatra–Andaman earthquake; Earth Planet. Sci. Lett. 293(3–4) 289–299.

  • Kamesh Raju K, Murty G, Amarnath D and Kumar M M 2007 The west Andaman fault and its influence on the aftershock pattern of the recent megathrust earthquakes in the Andaman–Sumatra region; Geophys. Res. Lett. 34(3).

  • Kanamori H 1971 Seismological evidence for a lithospheric normal faulting – the Sanriku earthquake of 1933; Phys. Earth Planet. Int. 4(4) 289–300.

    Article  Google Scholar 

  • Khan P K, Shamim S, Mohanty S P and Aggarwal S K 2020 Change of stress patterns during 2004 Mw 9.3 off-Sumatra mega-event: Insights from ridge-trench interaction for plate margin deformation; Geol. J. 55(1) 372–389.

  • Konca A O, Hjorleifsdottir V, Song T R A, Avouac J P, Helmberger D V, Ji C, Sieh K, Briggs R and Meltzner A 2007 Rupture kinematics of the 2005 Mw 8.6 Nias-simeulue earthquake from the joint inversion of seismic and geodetic data; Bull. Seismol. Soc. Am. 97(1A) S307–S322.

    Article  Google Scholar 

  • Krishna K S, Abraham H, Sager W W, Pringle M S, Frey F, Gopala Rao D and Levchenko O V 2012 Tectonics of the ninetyeast ridge derived from spreading records in adjacent oceanic basins and age constraints of the ridge; J. Geophys. Res.: Solid Earth 117(B4).

  • Krishna M R and Sanu T 2002 Shallow seismicity, stress distribution and crustal deformation pattern in the Andaman-west Sunda arc and Andaman sea, northeastern Indian ocean; J. Seismol. 6(1) 25–41.

    Article  Google Scholar 

  • Kumar P, Srijayanthi G and Ravi Kumar M 2016 Seismic evidence for tearing in the subducting Indian slab beneath the Andaman arc; Geophys. Res. Lett. 43(10) 4899–4904.

    Article  Google Scholar 

  • Lallemand S and Funiciello F 2009 Subduction Zone Geodynamics; Springer, Berlin.

    Book  Google Scholar 

  • Lay T, Ammon C J, Kanamori H, Kim M J and Xue L 2011 Outer trench-slope faulting and the 2011 Mw 9.0 off the Pacific coast of Tohoku earthquake; Earth, Planets Space 63(7) 37.

    Google Scholar 

  • Levandowski W, Herrmann R B, Briggs R, Boyd O and Gold R 2018 An updated stress map of the continental United States reveals heterogeneous intraplate stress; Nat. Geosci. 1.

  • Liu X, McNally K C and Shen Z K 1995 Evidence for a role of the downgoing slab in earthquake slip partitioning at oblique subduction zones; J. Geophys. Res.: Solid Earth 100(B8) 15,351–15,372.

    Article  Google Scholar 

  • Martínez-Garzón P, Kwiatek G, Ickrath M and Bohnhoff M 2014 MSATSI: A matlab package for stress inversion combining solid classic methodology, a new simplified user-handling, and a visualization tool; Seismol. Res. Lett. 85(4) 896–904.

  • Martínez-Garzón P, Ben-Zion Y, Abolfathian N, Kwiatek G and Bohnhoff M 2016 A refined methodology for stress inversions of earthquake focal mechanisms; J. Geophys. Res.: Solid Earth 121(12) 8666–8687.

    Article  Google Scholar 

  • McCaffrey R 1991 Slip vectors and stretching of the sumatran fore arc; Geology 19(9) 881–884.

    Article  Google Scholar 

  • McCaffrey R 1992 Oblique plate convergence, slip vectors, and forearc deformation; J. Geophys. Res.: Solid Earth 97(B6) 8905–8915.

    Article  Google Scholar 

  • Menke W, Abend H, Bach D, Newman K and Levin V 2006 Review of the source characteristics of the great Sumatra–Andaman islands earthquake of 2004; Sur. Geophys. 27(6) 603–613.

    Article  Google Scholar 

  • Michael A J 1984 Determination of stress from slip data: Faults and folds; J. Geophys. Res.: Solid Earth 89(B13) 11,517–11,526.

    Article  Google Scholar 

  • Michael A J 1987 Stress rotation during the coalinga aftershock sequence; J. Geophys. Res.: Solid Earth 92(B8) 7963–7979.

    Article  Google Scholar 

  • Müller R, Yatheesh V and Shuhail M 2015 The tectonic stress field evolution of India since the oligocene; Gondwana Res. 28(2) 612–624.

  • Paul J, Rajendran C, Lowry A, Andrade V and Rajendran K 2012 Andaman postseismic deformation observations: Still slipping after all these years?; Bull. Seismol. Soc. Am. 102(1) 343–351.

    Article  Google Scholar 

  • Qiu Q, Moore J D, Barbot S, Feng L and Hill E M 2018 Transient rheology of the Sumatran mantle wedge revealed by a decade of great earthquakes; Nature Commun. 9(1) 1–13.

    Article  Google Scholar 

  • Rajendran C, Rajendran K, Anu R, Earnest A, Machado T, Mohan P and Freymueller J 2007 Crustal deformation and seismic history associated with the 2004 Indian ocean earthquake: A perspective from the Andaman-Nicobar islands; Bull. Seismol. Soc. Am. 97(1A) S174–S191.

    Article  Google Scholar 

  • Rajendran K and Gupta H K 1989 Seismicity and tectonic stress field of a part of the Burma–Andaman–Nicobar arc; Bull. Seismol. Soc. Am. 79(4) 989–1005.

    Google Scholar 

  • Rajendran K, Talwani P and Gupta H 1992 State of stress in the Indian subcontinent: A review; Curr. Sci. 62(1–2) 86–93.

    Google Scholar 

  • Raju K K, Ramprasad T, Rao P, Rao B R and Varghese J 2004 New insights into the tectonic evolution of the Andaman basin, northeast Indian ocean; Earth Planet. Sci. Lett. 221(1–4) 145–162.

    Article  Google Scholar 

  • Ratchkovski N A 2003 Change in stress directions along the central Denali fault, Alaska after the 2002 earthquake sequence; Geophys. Res. Lett. 30(19).

  • Sevilgen V, Stein R S and Pollitz F F 2012 Stress imparted by the great 2004 Sumatra earthquake shut down transforms and activated rifts up to 400 km away in the Andaman sea; Proc. Natl. Acad. Sci. 109(38) 15,152–15,156.

    Article  Google Scholar 

  • Sieh K and Natawidjaja D 2000 Neotectonics of the Sumatran fault, Indonesia; J. Geophys. Res.: Solid Earth 105(B12) 28,295–28,326.

    Article  Google Scholar 

  • Simpson R W 1997 Quantifying anderson’s fault types; J. Geophys. Res.: Solid Earth 102(B8) 17,909–17,919.

    Article  Google Scholar 

  • Spence W 1987 Slab pull and the seismotectonics of subducting lithosphere; Rev. Geophys. 25(1) 55–69.

    Article  Google Scholar 

  • Subarya C, Chlieh M, Prawirodirdjo L, Avouac J P, Bock Y, Sieh K, Meltzner A J, Natawidjaja D H and McCaffrey R 2006 Plate-boundary deformation associated with the great Sumatra–Andaman earthquake; Nature 440(7080) 46.

    Article  Google Scholar 

  • Vavryčuk V 2011 Principal earthquakes: Theory and observations from the 2008 west Bohemia swarm; Earth Planet. Sci. Lett. 305(3–4) 290–296.

    Article  Google Scholar 

  • Vavryčuk V 2014 Iterative joint inversion for stress and fault orientations from focal mechanisms; Geophys. J. Int. 199(1) 69–77.

    Article  Google Scholar 

  • Xu P 2004 Determination of regional stress tensors from fault-slip data; Geophys. J. Int. 157(3) 1316–1330.

    Article  Google Scholar 

  • Yang Y R, Johnson K M and Chuang R Y 2013 Inversion for absolute deviatoric crustal stress using focal mechanisms and coseismic stress changes: The 2011 M 9 Tohoku-oki, Japan, earthquake; J. Geophys. Res.: Solid Earth 118(10) 5516–5529.

    Article  Google Scholar 

  • Zhao D, Kanamori H and Wiens D 1997 State of stress before and after the 1994 Northridge earthquake; Geophys. Res. Lett. 24(5) 519–522.

    Article  Google Scholar 

  • Zoback M D and Beroza G C 1993 Evidence for near-frictionless faulting in the 1989 (M 6.9) Loma Prieta, California, earthquake and its aftershocks; Geology 21(2) 181–185.

  • Zoback M L 1992 First-and second-order patterns of stress in the lithosphere: The world stress map project; J. Geophys. Res.: Solid Earth 97(B8) 11,703–11,728.

    Article  Google Scholar 

  • Zoback M L and Zoback M D 1989 Tectonic stress field of the continental United States; Geophysical framework of the continental United States; Geol. Soc. Am. Mem. 172 523–539.

    Google Scholar 

Download references

Acknowledgements

Earthquake moment-tensor data from Global Centroid moment-tensor (GCMT) database are used in this study. We used MSATSI – a MATLAB package for stress inversion (Martínez-Garzón et al. 2014) and thank the developers for making it freely available. We used the Generic Mapping Tools for drawing the figures. We would like to thank the two anonymous reviewers for their thoughtful comments and support. We acknowledge the University Grants Commission (UGC), India for SRF fellowship of SK. We thank Sunilkumar T C for the fruitful discussions and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Earnest.

Additional information

Communicated by Munukutla Radhakrishna

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silpa, K., Earnest, A. A note on stress rotations due to the 2004 Mw 9.2 Sumatra–Andaman megathrust earthquake. J Earth Syst Sci 129, 187 (2020). https://doi.org/10.1007/s12040-020-01446-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-020-01446-5

Keywords

Navigation