Skip to main content

Advertisement

Log in

Early Neoarchaean A-type granitic magmatism by crustal reworking in Singhbhum craton: Evidence from Pala Lahara area, Orissa

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Several volumetrically minor \(\sim \)2.8 Ga anorogenic granites and rhyolites occur along the marginal part of the Singhbhum craton whose origin and role in crustal evolution are poorly constrained. This contribution presents petrographic, geochemical, zircon U–Pb and trace element, and mineral chemical data on such granites exposed in the Pala Lahara area to understand their petrogenesis and tectonic setting. The Pala Lahara granites are calc-alkaline, high-silica rocks and define a zircon U–Pb age of 2.79 Ga. These granites are ferroan, weakly metaluminous, depleted in Al, Ca and Mg and rich in LILE and HFSE. They are classified as A2-type granites with high Y/Nb ratios. Geochemical characteristics (high \(\hbox {SiO}_{2}\) and \(\hbox {K}_{2}\hbox {O}\), very low MgO, Mg#, Cr, Ni and V, negative Eu anomaly, flat HREE and low Sr/Y) and comparison with melts reported by published experimental studies suggest an origin through high-temperature, shallow crustal melting of tonalitic/granodioritic source similar to the \(\sim \)3.3 Ga Singhbhum Granite. Intrusion of the Pala Lahara granites was coeval with prominent mafic magmatism in the Singhbhum craton (e.g., the Dhanjori mafic volcanic rocks and NNE–SSW trending mafic dyke swarm). It is suggested that the \(\sim \)2.8 Ga A-type granites in the Singhbhum craton mark a significant crustal reworking event attendant to mantle-derived mafic magmatism in an extensional tectonic setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(modified after Mohanty et al. 2008).

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdel-Rahman A M 1994 Nature of biotite from alkaline, calc-alkaline, and peraluminous magmas; J. Petrol. 35 525–541.

    Article  Google Scholar 

  • Acharyya S K, Gupta A and Orihashi Y 2010 New U–Pb zircon ages from Paleo-Mesoarchean TTG gneisses of the Singhbhum craton, eastern India; Geochem. J. 44 81–88.

    Article  Google Scholar 

  • Anderson J L and Smith D R 1995 The effects of temperature and O\(_2\) on the Al-in-hornblende barometer; Am. Mineral. 80 549–559.

    Article  Google Scholar 

  • Bandyopadhyay P K, Chakrabarti A K, Deo Murari M P and Misra S 2001 2.8 Ga old anorogenic granite-acid volcanics association from western margin of the Singhbhum–Orissa craton, eastern India; Gondwana Res. 4 465–475.

    Article  Google Scholar 

  • Barker F 1979 Trondhjemites: Definition, environment and hypothesis of origin; In: Trondhjemites, Dacites and Related Rocks (ed.) Barker F, Elsevier, Amsterdam, pp. 1–12.

    Google Scholar 

  • Beard J S and Lofgren G E 1991 Partial melting of basaltic and andesitic greenstones and amphibolites under dehydration melting and water-saturated conditions at 1, 3, and 6.9 kilobars; J. Petrol. 32 365–401.

    Article  Google Scholar 

  • Beard J S, Lofgren G E, Sinha A K and Tollo R P 1994 Partial melting of apatite-bearing charnockite, granulite, and diorite: Melt compositions, restite mineralogy, and petrologic implications; J. Geophys. Res. 99 215,91–216,03.

    Article  Google Scholar 

  • Blichert-Toft J and Puchtel I S 2010 Depleted mantle sources through time: Evidence from Lu–Hf and Sm–Nd isotope systematics of Archean komatiites; Earth Planet. Sci. Lett.  297 598–606.

    Article  Google Scholar 

  • Bogaerts M, Scaillet B and Vander Auwera J 2006 Phase equilibria of the Lyngdal granodiorite (Norway): Implications for the origin of metaluminous ferroan granitoids;J. Petrol. 47 2405–2431.

    Article  Google Scholar 

  • Bonin B 2007 A-type granites and related rocks: Evolution of a concept, problems and prospects; Lithos 97 1–29.

    Article  Google Scholar 

  • Bose M K 2009 Precambrian mafic magmatism in the Singhbhum craton, eastern India; J. Geol. Soc. India 73 13–35.

    Article  Google Scholar 

  • Bose S, Das K, Kimura K, Hidaka H, Dasgupta A, Ghosh G and Mukhopadhyay J 2016 Neoarchean tectonothermal imprints in the Rengali Province, eastern India and their implication on the growth of Singhbhum Craton: Evidence from zircon U–Pb SHRIMP data; J. Metamorph. Geol. 34 743–764.

    Article  Google Scholar 

  • Bose S, Guha S, Ghosh G, Das K and Mukhopadhyay J 2015 Tectonic juxtaposition of crust and continental growth during orogenesis: Example from the Rengali Province, eastern India; Geosci. Front. 6 537–555.

    Article  Google Scholar 

  • Bouvier A, Vervoort J D and Patchett P J 2008 The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets; Earth Planet. Sci. Lett. 273 48–57.

    Article  Google Scholar 

  • Boynton W V 1984 Geochemistry of the rare earth elements: Meteorite studies; In: Rare Earth Element Geochemistry (ed.) Henderson P, Elsevier, Amesterdam, pp. 63–114.

  • Carroll M R and Wyllie P J 1990 The system tonalite–\(\text{ H }_{2}\text{ O }\) at 15 kbar and the genesis of calc-alkaline magmas; Am. Mineral. 75 345–357.

    Google Scholar 

  • Chakrabarti K, Ecka N R R, Mishra B, Ramesh Babu P V and Parihar P S 2011 Paleoproterozoic quartz-pebble conglomerate type uranium mineralisation in Mankarhachua area, Angul district, Orissa; J. Geol. Soc. India 77 443–449.

    Article  Google Scholar 

  • Chattopadhyay S, Upadhyay D, Nanda J K, Mezger K, Pruseth K L and Berndt J 2015 Proto-India was a part of Rodinia: Evidence from Grenville-age suturing of the Eastern Ghats Province with the Paleoarchean Singhbhum craton; Precamb. Res. 266 506–529.

    Article  Google Scholar 

  • Clemens J D, Holloway J R and White A J R 1986 Origin of A-type granite: Experimental constraints; Am. Mineral. 71 314–317.

    Google Scholar 

  • Collins W J, Beams D, White J R and Chappell B W 1982 Nature and origin of A-type granites with particular reference to south-eastern Australia; Contrib. Mineral. Petrol. 80 189–200.

    Article  Google Scholar 

  • Condie K C 1993 Chemical composition and evolution of the upper continental crust: Contrasting results from surface and shales; Chem. Geol. 104 1–37.

    Article  Google Scholar 

  • Creaser R A, Price R C and Wormald R J 1991 A-type granites revisited: Assessment of a residual-source model; Geology 19 163–166.

    Article  Google Scholar 

  • Crowe W A, Nash C R, Harris L B, Leeming P M and Rankin L R 2003 The geology of the Rengali Province: Implications for the tectonic development of northern Orissa, India; J. Asian Earth Sci. 21 697–710.

    Article  Google Scholar 

  • Cunha I R V, Dall’Agnol R and Feio G R L 2016 Mineral chemistry and magnetic petrology of the Archean Planalto Suite, Carajas Province – Amazonian Craton: Implications for the evolution of ferroan Archean granites; J. S. Am. Earth Sci. 67 100–121.

    Article  Google Scholar 

  • Dall’Agnol R, Cunhaa I R V, Guimarãesa F V, Oliveira D C, Teixeira M F V and Feio G R L 2017 Mineralogy, geochemistry, and petrology of Neoarchean ferroan to magnesian granites of Carajás Province, Amazonian Craton: The origin of hydrated granites associated with charnockites; Lithos 277 3–32.

    Article  Google Scholar 

  • Dasgupta A, Bose S, Das K and Ghosh G 2017 Petrological and geochemical evolution of the Central Gneissic Belt, Rengali Province, eastern India: Implications for the Neoarchean growth and orogenesis; J. Asian Earth Sci. 146 1–19.

    Article  Google Scholar 

  • Dey 2013 Evolution of Archaean crust in the Dharwar craton: the Nd isotope record; Precamb. Res. 227 227–246.

    Article  Google Scholar 

  • Dey S, Nandy J, Choudhary A K, Liu Y and Zong K 2014 Origin and evolution of granitoids associated with the Kadiri greenstone belt, eastern Dharwar craton: A history of orogenic to anorogenic magmatism; Precamb. Res. 246 64–90.

    Article  Google Scholar 

  • Dey S, Topno A, Liu Y and Zong K Q 2017 Generation and evolution of Palaeoarchaean continental crust in the central part of the Singhbhum craton, eastern India; Precamb. Res. 298 268–291.

    Article  Google Scholar 

  • Du L, Yang C, Wyman D A, Nutman A P, Lu Z, Song H, Xie H, Wan Y, Zhao Lei, Geng Y and Ren L 2016 2090–2070 Ma A-type granitoids in Zanhuang Complex: Further evidence on a Paleoproterozoic rift-related tectonic regime in the Trans-North China Orogen; Lithos 254–255 18–35.

    Article  Google Scholar 

  • Eby G N 1990 The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis; Lithos 26 115–134.

    Article  Google Scholar 

  • Eby G N 1992 Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications; Geology 20 641–644.

    Article  Google Scholar 

  • Erdmann S, London D, Morgan G B and Clarke D B 2007 The contamination of granitic magma by metasedimentary country-rock material: An experimental study; Can. Mineral. 45 43–61.

    Article  Google Scholar 

  • Feio G R L, Dall’Agnol R, Dantas E L, Macambira M J B, Gomes A C B, Sardinha A S, Oliveira D C, Santos R D and Santos P A 2012 Geochemistry, geochronology, and origin of the Neoarchean Planalto Granite suite, Carajás, Amazonian craton: A-type or hydrated charnockitic granites? Lithos 151 57–73.

    Article  Google Scholar 

  • Frost C D and Frost B R 2008 A geochemical classification for feldspathic igneous rocks; J. Petrol. 49 1569–1955.

    Google Scholar 

  • Frost C D and Frost B R 2011 On Ferroan (A-type) granitoids: Their compositional variability and modes of origin; J. Petrol. 52(1) 39–53.

    Article  Google Scholar 

  • Frost C D, Frost B R, Chamberlain K R and Edwards B R 1999 Petrogenesis of the 1\(\cdot \)43 Ga Sherman batholith, SE Wyoming: A reduced Rapakivi-type anorogenic granite;J. Petrol. 40 1771–1802.

    Article  Google Scholar 

  • Fu B, Page Z F, Cavosie J A, Fournelle J, Kita T N, Lackey S J, Wilde A S and Valley W J 2008 Ti-in-zircon thermometry: Application and limitation; Contrib. Mineral. Petrol. 156 197–215.

    Article  Google Scholar 

  • Ghosh G, Bose S, Das K, Dasgupta A, Yamamoto T, Hayasaka Y, Chakrabarti K and Mukhopadhyay J 2016 Transpression and juxtaposition of middle crust over upper crust forming a crustal scale flower structure: Insight from structural, fabric, and kinematic studies from the Rengali Province, eastern India; J. Struct. Geol. 83 156–179.

    Article  Google Scholar 

  • Gorring M L, Estelle T C and Volkert R A 2004 Geochemistry of the Late Mesoproterozoic Mount Eve granite suite: Implications for Late to post-Ottawan tectonics in the New Jersey–Hudson Highlands; In: Proterozoic tectonic evolution of the Grenville orogen in North America (eds) Tollo R P, Corriveau L, McLelland J and Bartholomew M J, Boulder, Colorado; Geol. Soc. Am. Memoir 197 505–523.

  • Grebennikov A V 2014 A-type granites and related rocks: Petrogenesis and classification; Russ. Geol. Geophys. 55 1074–1086.

    Article  Google Scholar 

  • Griffin W L, Wang X, Jackson S E, Pearson N J, O’Reilly S Y, Xu X and Zhou X 2002 Zircon chemistry and magma mixing, SE China: In situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes; Lithos 61 237–269.

    Article  Google Scholar 

  • Guitreau M, Blichert-Toft J, Martin H, Mojzsis S J and Albarede F 2012 Hafnium isotope evidence from Archean granitic rocks for deep-mantle origin of continental crust; Earth Planet Sci. Lett. 337–338 211–223.

    Article  Google Scholar 

  • Gupta A, Basu A and Singh S K 1985 Startigraphy and petrochemistry of Dhanjori greenstone belt, eastern India; Quat. J. Geol. Mineral. Metallur. Soc. India 57 248–263.

    Google Scholar 

  • Hammarstrom J M and Zen E 1986 Aluminium in amphibole: An empirical igneous geobarometer; Am. Mineral. 71 1297–1313.

    Google Scholar 

  • Hawkesworth C, Cawood P and Dhuime B 2013 Continental growth and the crustal record; Tectonophys. 609 651–660.

    Article  Google Scholar 

  • Hawthhorne C F, Oberti R, Harlow E G, Maresh V M, Martin F R, Schumacher C J and Welch D M 2012 IMA report Nomenclature of the amphibole supergroup; Am. Mineral. 97 2031–2048.

    Article  Google Scholar 

  • Hill R I, Campbell I H, Davies G F and Griffiths RW 1992 Mantle plumes and continental tectonics; Science 256 186–193.

    Article  Google Scholar 

  • Hofmann A and Mazumdar R 2015 A review of the current status of the Older Metamorphic Group and Older Metamorphic Tonalite Gneiss: Insight into the Palaeoarchean history of the Singhbhum craton, India; In: Precambrian Basin of India: Stratigraphy and Tectonic Context (eds) Mazumdar R and Eriksson P G, Geol. Soc. London Memoirs 43 103–107, https://doi.org/10.1144/M43.7.

  • Hollister L S, Grissom G C, Peters E K, Stowell H H and Sisson V B 1987 Confirmation of the empirical correlation of AL in hornblende with pressure of solidification of calc-alkaline plutons; Am. Mineral. 72 231–239.

    Google Scholar 

  • Hoskin P W O 2005 Trace element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia; Geochim. Cosmochim. Acta 69 637–648.

    Article  Google Scholar 

  • King P L, Chappell B W, Allen C M and White A J R 2001 Are A-type granites the high-temperature felsic granites? Evidence from fractionated granites of the Wangrah suite; Austr. J. Earth Sci. 48 501–514.

    Article  Google Scholar 

  • King P L, White A J R, Chappell B W and Allen C M 1997 Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, southeastern Australia; J. Petrol. 38 371–391.

    Article  Google Scholar 

  • Kumar A, Parashuramulu V, Shankar R and Besse J 2017 Evidence for a Neoarchean LIP in the Singhbhum craton, eastern India: Implications to Vaalbara supercontinent; Precamb. Res. 292 163–174.

    Article  Google Scholar 

  • Leake B E, Woolley A R, Arps C E S, Birch W D, Gilbert M C, Grice J D, Hawthorne F C, Kato A, Kisch H J, Kirvovichev V G, Linthout K, Laired J, Mandarino J, Maresch W V, Nickel E H, Rock N M S, Schumacar J C, Smith D C, Stephenson N C N, Ungaretti L, Whittaker E J W and Youzhi G 1997 Nomenclature of amphiboles: Report of the subcommittee on amphibole of the International Mineralogical Association Commission on New Minerals and Mineral Names; Can. Mineral. 35 219–246.

    Google Scholar 

  • Mahalik N K 1994 Geology of the contact between the Eastern Ghats belt and North Orissa craton, India; J. Geol. Soc. India 44 41–51.

    Google Scholar 

  • Mahapatro S N, Nanda J K and Tripathy A K 2010 The Jugsaipatna Anorthosite Complex, Eastern Ghats Belt, India: Magmatic lineage and petrogenetic implications; J. Asian Earth Sci. 38 147–161.

    Article  Google Scholar 

  • Mahapatro S N, Pant N C, Bhowmik S K, Tripathy A K and Nanda J K 2011 Archean granulite facies metamorphism at Singhbhum Craton–Eastern Ghats Mobile belt interface: Implication of the Ur supercontinent assembly; Geol. J. 47 312–333.

    Article  Google Scholar 

  • Mazumder R, De S, Ohta T, Flannery D, Mallik L, Chaudhury T, Chatterjee P, Ranaivoson M A and Arima M 2015 Palaeo-Mesoproterozoic sedimentation and tectonics of the Singhbhum Craton, eastern India, and implications for global and craton-specific geological events; In: Precambrian Basins of India: Stratigraphic and Tectonic Context (eds) Mazumder R, Eriksson P G, Geol. Soc. London Memoirs 43 139–149.

  • Mazumder R, Van Loon A J, Mallik L, Reddy S M, Arima M, Altermann W, Eriksson P G and De S 2012 Mesoarchaean–Palaeoproterozoic stratigraphic record of the Singhbhum crustal province, eastern India: A synthesis; Geol. Soc. Spec. Publ. 365 31–49.

    Article  Google Scholar 

  • McCurry A R, Hayden K P, Morse I H and Mertzman S 2008 Genesis of post-hotspot, A-type rhyolite of the Eastern Snake River Plain volcanic field by extreme fractional crystallization of olivine tholeiite; Bull. Volcanol. 79 361–383.

    Article  Google Scholar 

  • Miller C F, McDowell S M and Mapes R W 2003 Hot and cold granites? Implication of zircon saturation temperatures and preservation of inheritance; Geology 31 529–532.

    Article  Google Scholar 

  • Mingram B, Trumbull R B, Littman S and Gerstenberger H 2000 A petrogenetic study of anorogenic felsic magmatism in the Cretaceous Paresis ring complex, Namibia: Evidence for mixing of crust and mantle-derived components; Lithos 54 1–22.

    Article  Google Scholar 

  • Mishra S, Deomurari M P, Wiedenbeck M, Goswami J N, Ray S and Saha A K 1999 \(^{207}\)Pb/\(^{206}\)Pb zircon ages and the evolution of the Singhbhum craton, eastern India: An ion microprobe study; Precamb. Res. 93 139–151.

    Article  Google Scholar 

  • Mishra S and Johnson P T 2005 Geochronological constraints on evolution of Singhbhum Mobile Belt and associated basic volcanics of eastern Indian shield; Gondwana Res. 8 129–142.

    Article  Google Scholar 

  • Mishra S, Moitra S, Bhattacharya S and Sivaraman T V 2000 Archaean granitoids at the contact of Eastern Ghats Granulite Belt and Singhbhum–Orissa Craton in Bhuban–Rengali sector, Orissa, India; Gondwana Res. 3 205–213.

    Article  Google Scholar 

  • Mohanty M, Panda P K and Mohanty B K 2008 Petrogenesis of Pallaharha granite gneiss in eastern India Craton: Evidence from field relation and petrochemistry; J. Geol. Soc. India 72 415–431.

    Google Scholar 

  • Moyen J-F 2009 High Sr/Y and La/Yb ratios: The meaning of the ‘Adakitic Signature’; Lithos 112 556–574.

    Article  Google Scholar 

  • Moyen J-F and Stevens G 2006 Experimental constraints on TTG petrogenesis: Implications for Archean Geodynamics; In: Archean Geodynamics and Environments (eds) Benn K, Mareschal J-C and Condie K C, Monographs, AGU, pp. 149–178.

  • Nachit H, Razafimahefa N, Stussi J M and Carron J P 1985 Composition chimique des biotites et typologie magmatique des granitoïdes; Comptes Rendus l’Acad_emie Sci. Paris 301, 813e818.

  • Namur O, Charlier B, Toplis M J, Higgins M D, Hounsell V, Liegeois J P and Auwera J V 2011 Differentiation of tholeiitic basalt to A-type granite in the Sept Iles layered intrusion; J. Petrol. 52 487–539.

    Article  Google Scholar 

  • Nash C R, Rankin L R, Leeming P M and Harris L B 1996 Delineation of lithotectonic domains in northern Orissa (India) from Landsat Thematic Mapper imagery; Tectnophys. 260 245–257.

    Article  Google Scholar 

  • Nelson D, Bhattacharya H N, Thern E R and Altermann W 2014 Geochemical and ion-microprobe U–Pb zircon constraints on the Archaean evolution of Singhbhum Craton, eastern India; Precamb. Res. 255 412–432.

    Article  Google Scholar 

  • Papousta A and Pe-Piper G 2014 Geochemical variation of amphiboles in A-type granites as an indicator of complex magmatic systems: Wentworth pluton, Scotia, Canada; Chem. Geol. 384 120–134.

    Article  Google Scholar 

  • Patino Douce 1997 Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids; Geology 25 743–746.

    Article  Google Scholar 

  • Pearce J A, Harris N B W and Tindle A G 1984 Trace element discrimination diagram for the tectonic interpretation of granitic rocks; J. Petrol. 25 956–983.

    Article  Google Scholar 

  • Peccerillo A and Taylor S R 1976 Geochemistry of Eocene calc-alkaline volcanic rocks from Kastamonu area, Northern Turkey; Contrib. Mineral. Petrol. 58(1) 63–81.

    Article  Google Scholar 

  • Prasad Rao G H S V, Murthy Y G K and Deekshitulu M N 1964 Stratigraphic relation of Precambrian iron formations and associated sedimentary sequence in parts of Keonjhar, Cuttack, Dhenkanal and Sundargarh districts, Orissa, India; Proc. Int. Geol. Congress, 22nd session, Part 10 72–78.

  • Rapp R P and Watson E B 1995 Dehydration melting of metabasalt at 8–32 kbr: Implication for continental growth and crust-mantle recycling; J. Petrol. 36 891–931.

    Article  Google Scholar 

  • Rey P F, Philippot P and Thébaud N 2003 Contribution of mantle plumes, crustal thickening and greenstone blanketing to the 2.75–2.65 Ga global crisis; Precamb. Res. 127 43–60.

    Article  Google Scholar 

  • Rudnick R L and Gao S 2003 Composition of the continental crust; In: Treatise on Geochemistry 3 1–64, Elsevier, Amsterdam.

  • Rushmer T 1991 Partial melting of two amphibolites: Contrasting experimental results under fluid-absent conditions; Contrib. Mineral. Petrol. 107 41–59.

    Article  Google Scholar 

  • Rutter M J and Wyllie P J 1988 Melting of vapour-absent tonalite at 10 kbar to simulate dehydration melting in the deep crust; Nature 331 159–160.

    Article  Google Scholar 

  • Sarkar S N, Saha A K and Sen S 1990 Strctural pattern of Pala Laharha area, Dhenkanal district based on aerial photo interpretation and ground data; Indian J. Earth Sci. 17 128–137.

    Google Scholar 

  • Saha A K 1994 Crustal evolution of Singhbhum – North Orissa, eastern India; Geol. Soc. India Memoir 27 339.

    Google Scholar 

  • Schmidt M W 1992 Amphibole composition in tonalite as a function of pressure: An experimental calibration of the Al-in-hornblende barometer; Contrib. Mineral. Petrol. 110 304–310.

    Article  Google Scholar 

  • Schumacher J C 1997 The estimation of ferric iron in electron microprobe analysis of amphiboles; In: 1997 Nomenclature of Amphiboles. Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names (ed) Leake B E, Eur. J. Mineral. 9 623–651.

  • Sharma M, Basu A R and Ray S L 1994 Sm–Nd isotopic and geochemical study of the Archaean tonalite–amphibolite association from the eastern Indian craton; Contrib. Mineral. Petrol. 117 45–55.

    Article  Google Scholar 

  • Skjerlie K P and Johnston A D 1993 Fluid-absent melting behaviour of an F-rich tonalitic gneiss at mid-crustal pressures: Implications for the generation of anorogenic granites; J. Petrol. 34 785–815.

    Article  Google Scholar 

  • Speer J A 1984 Micas in igneous rocks; In: Micas (ed.) Bailey S W, Rev. Mineral. 13 299–356; Piedmont, USA; Can. Mineral. 19 35–46 (1981).

  • Sun S S and McDonough W F 1989 Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes; In: Magmatism in ocean basins (eds) Saunders A D and Norry M J, Geol. Soc. Spec. Publ. 42 313–345.

  • Tait J, Zimmermann U, Miyazaki T, Presnyakov S, Chang Q, Mukhopadhyay J and Sergeev S 2011 Possible juvenile Palaeoarchaean TTG magmatism in eastern India and its constraints for the evolution of the Singhbhum craton; Geol. Mag. 148 340–347.

    Article  Google Scholar 

  • Tischendorf G, Foster H J, Gottesmann B and Rieder M 2007 True and brittle micas: Composition and solid-solution series; Mineral. Mag. 71 285–320.

    Article  Google Scholar 

  • Upadhyay D, Chattopadhyay S, Kooijman E, Mezger K and Berndt J 2014 Magmatic and metamorphic history of Paleoarchean tonalite–trondhjemite–granodiorite (TTG) suites from the Singhbhum craton, eastern India; Precamb. Res. 252 180–190.

    Article  Google Scholar 

  • Watkins J, Clemens J, and Treloar P 2007 Archean TTGs as sources of younger granitic magmas: Melting of sodic metatonalites at 0.6–1.2 Gpa; Contrib. Mineral. Petrol. 154 91–100.

    Article  Google Scholar 

  • Watson E B and Harrison T M 1983 Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types; Earth Planet. Sci. Lett. 64 295–304.

    Article  Google Scholar 

  • Watson E B, Wark D A and Thomas J B 2006 Crystallization thermometers for zircon and rutile; Contrib. Mineral. Petrol. 151 413–433.

    Article  Google Scholar 

  • Whalen J B, Currie K L and Chappell B W 1987 A-type granites: Geochemical characteristics, discrimination and petrogenesis; Contrib. Mineral. Petrol. 95 407–419.

    Article  Google Scholar 

  • Zhai M 2014 Multi-stage crustal growth and cratonization of the North China Craton; Geosci. Front. 5 457–469.

    Article  Google Scholar 

  • Zhang H F, Parrish R, Zhang Li, Xu W C, Yuan H L, Gao S and Crowley Q G 2007 A-type granite and adakitic magmatism association in Songpan–Garze fold belt, eastern Tibetan Plateau: Implication for lithospheric delamination; Lithos 97(3–4) 323–335.

    Article  Google Scholar 

Download references

Acknowledgements

Insightful comments from two anonymous journal reviewers and effective editorial handing by Prof. Rajesh Srivastava helped to improve the quality of the paper. SD acknowledges Ministry of Earth Sciences, Government of India research Grant MoES/P.O.(Geosci)/45/2015. AT has received a Ph.D. research fellowship from Indian School of Mines. The laboratory facilities in the Department of Applied Geology, IIT(ISM), funded through DST FIST Level II Project No. SR/FST/ESII-014/2012(C), are also acknowledged. The research is also supported by the MOST Special Funds of the State Key Laboratory of Geological Processes and Mineral Resources (MSFGPMR01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukanta Dey.

Additional information

Corresponding editor: Rajesh Kumar Srivastava

Supplementary material pertaining to this article is available on the Journal of Earth System Science website (http://www.ias.ac.in/Journals/Journal_of_Earth_System_Science).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 20 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Topno, A., Dey, S., Liu, Y. et al. Early Neoarchaean A-type granitic magmatism by crustal reworking in Singhbhum craton: Evidence from Pala Lahara area, Orissa. J Earth Syst Sci 127, 43 (2018). https://doi.org/10.1007/s12040-018-0947-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-018-0947-y

Keywords

Navigation