Skip to main content
Log in

Designing M-bond (X-M···Y, M = transition metal): σ-hole and radial density distribution

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Following the ubiquitous H-bond, there is a growing interest in weak non-covalent interactions involving other elements, viz., the Z-bonds (X-Z···Y, Z = halogens, chalcogens, etc.). Although almost all the main group elements can act as Z bond donors, the search for a similar role for transition metals in X-M···Y, (M = transition metal) interaction, called the Metal-bond, is still in its infancy. This article summarizes our attempts to understand the participation of transition metal elements as electron acceptors in a weak interaction with electron-rich species Y. Cambridge Structural Database analysis revealed that except Group 11 and 12 transition metal complexes (Type-II), electron-saturated (18 electron) metal complexes having partly filled d orbitals (Group 3–10; Type-I) hesitate to form Metal-bonds. This is attributed to the partial σ-hole screening by core electron density and diminished stabilization from charge polarization in Type I complexes. We also show that Type-I complexes could be forced to form Metal-bonds by employing extreme ligand conditions, thereby opening new areas of research where Metal-bonds can act as emerging non-covalent interaction in designing supramolecular architectures.

Graphic abstract

Designing Metal-Bond in electron saturated (18 electron) transition metal complexes is a daunting task due to their special electronic structure. Here, we summarize our understanding of the reasons behind this reluctance and provide recipes to make them compactable for Metal-Bond formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Adapted with permission from reference30. Copyright (2017) American Chemical Society.

Figure 4
Figure 5

Similar content being viewed by others

References

  1. Gilli G and Gilli P 2009 The Nature of the Hydrogen Bond: Outline of a Comprehensive Hydrogen Bond Theory (Oxford: OUP)

    Book  Google Scholar 

  2. Hobza P and Havlas Z 2000 Blue-Shifting Hydrogen Bonds Chem. Rev. 100 4253

    Article  CAS  PubMed  Google Scholar 

  3. Scheiner S 1997 Hydrogen Bonding: A Theoretical Perspective (Oxford: Oxford University Press)

    Google Scholar 

  4. Joseph J and Jemmis E D 2007 Red-, Blue-, or No-Shift in Hydrogen Bonds:  A Unified Explanation J. Am. Chem. Soc. 129 4620

    Article  CAS  PubMed  Google Scholar 

  5. Grabowski S 2006 Hydrogen Bonding – New Insights (Netherlands: Springer)

    Book  Google Scholar 

  6. Arunan E, Desiraju Gautam R, Klein Roger A, Sadlej J, Scheiner S, Alkorta I, Clary David C, Crabtree Robert H, Dannenberg Joseph J, Hobza P, Kjaergaard Henrik G, Legon Anthony C, Mennucci B and Nesbitt David J 2011 Definition of the hydrogen bond (IUPAC Recommendations 2011) In Pure Appl. Chem. Vol. 83 p.1637

    CAS  Google Scholar 

  7. Kolář M H and Hobza P 2016 Computer Modeling of Halogen Bonds and Other σ-Hole Interactions Chem. Rev. 116 5155

    Google Scholar 

  8. Wang C, Danovich D, Mo Y and Shaik S 2014 On The Nature of the Halogen Bond J. Chem. Theory Comput. 10 3726

    Article  CAS  PubMed  Google Scholar 

  9. Fanfrlík J, Přáda A, Padělková Z, Pecina A, Macháček J, Lepšík M, Holub J, Růžička A, Hnyk D and Hobza P 2014 The Dominant Role of Chalcogen Bonding in the Crystal Packing of 2D/3D Aromatics Angew. Chem., Int. Ed. 53 10139

    Article  PubMed  CAS  Google Scholar 

  10. Fick R J, Kroner G M, Nepal B, Magnani R, Horowitz S, Houtz R L, Scheiner S and Trievel R C 2016 Sulfur–Oxygen Chalcogen Bonding Mediates AdoMet Recognition in the Lysine Methyltransferase SET7/9 ACS Chem. Biol. 11 748

    CAS  Google Scholar 

  11. Scheiner S 2015 The interplay between charge transfer, rehybridization, and atomic charges in the internal geometry of subunits in noncovalent interactions Int. J. Quantum Chem. 115 28

    Article  CAS  Google Scholar 

  12. Tripathi G, Badi-uz-zama K and Ramanathan G 2016 N⋯N pnicogen bonds in Boc-DOPA-OMe Chem. Phys. Lett. 653 117

    CAS  Google Scholar 

  13. Bauzá A, Mooibroek T J and Frontera A 2013 Tetrel-Bonding Interaction: Rediscovered Supramolecular Force? Angew. Chem., Int. Ed. 52 12317

  14. Mani D and Arunan E 2013 The X-CY (X = O/F, Y = O/S/F/Cl/Br/N/P) ‘carbon bond’ and hydrophobic interactions Phys. Chem. Chem. Phys. 15 14377

    Article  CAS  Google Scholar 

  15. Grabowski S J 2014 Boron and other Triel Lewis Acid Centers: From Hypovalency to Hypervalency ChemPhysChem 15 2985

    Article  CAS  PubMed  Google Scholar 

  16. Grabowski S J 2015 pi-Hole Bonds: Boron and Aluminum Lewis Acid Centers ChemPhysChem 16 1470

  17. Zhong A, Chen D and Li R 2015 Revisiting the beryllium bonding interactions from energetic and wavefunction perspectives Chem. Phys. Lett. 633 265

    CAS  Google Scholar 

  18. Villanueva E F, Mo O and Yanez M 2014 On the existence and characteristics of p-beryllium bonds Phys. Chem. Chem. Phys. 16 17531

    Article  CAS  Google Scholar 

  19. Shahi A and Arunan E 2014 Hydrogen bonding, halogen bonding and lithium bonding: an atoms in molecules and natural bond orbital perspective towards conservation of total bond order, inter- and intra-molecular bonding Phys. Chem. Chem. Phys. 16 22935

    Article  CAS  Google Scholar 

  20. Esrafili M D, Juyban P and Solimannejad M 2014 Exploring lithium bonding interactions between noble-gas hydrides HXeY and LiX molecules (Y = H, CN, NC and X = H, CN, NC, OH, NH2, CH3): A theoretical study Comp. Theor. Chem. 1027 84

    Article  CAS  Google Scholar 

  21. Bauza A and Frontera A 2015 p-Hole aerogen bonding interactions Phys. Chem. Chem. Phys. 17 24748

    Article  CAS  Google Scholar 

  22. Esrafili M D, Asadollahi S and Vakili M 2016 Investigation of substituent effects in aerogen-bonding interaction between ZO3 (Z = Kr, Xe) and nitrogen bases Int. J. Quantum Chem. 116 1254

    Article  CAS  Google Scholar 

  23. Joy J, Jemmis E D and Vidya K 2015 Negative hyperconjugation and red-, blue- or zero-shift in X-ZY complexes Faraday Discuss. 177 33

    Article  CAS  PubMed  Google Scholar 

  24. Joy J, Jose A and Jemmis E D 2016 Continuum in the X-Z—Y weak bonds: Z = main group elements J. Comput. Chem. 37 270

    Article  CAS  PubMed  Google Scholar 

  25. Clark T, Hennemann M, Murray J and Politzer P 2007 Halogen bonding: the σ-hole J. Mol. Model 13 291

    Article  CAS  PubMed  Google Scholar 

  26. Politzer P, Murray J S and Lane P 2007 σ-Hole bonding and hydrogen bonding: Competitive interactions Int. J. Quantum Chem. 107 3046

    Article  CAS  Google Scholar 

  27. Politzer P, Murray J S and Clark T 2013 Halogen bonding and other [sigma]-hole interactions: a perspective Phys. Chem. Chem. Phys. 15 11178

    Article  CAS  Google Scholar 

  28. Wolters L P and Bickelhaupt F M 2012 Halogen Bonding versus Hydrogen Bonding: A Molecular Orbital Perspective ChemistryOpen 1 96

    CAS  PubMed  Google Scholar 

  29. Politzer P, Murray J S and Clark T 2015 σ-Hole Bonding: A Physical Interpretation. In Halogen Bonding I: Impact on Materials Chemistry and Life Sciences P Metrangolo and G Resnati (Eds.) (Cham: Springer International Publishing) p. 19

    Google Scholar 

  30. Joy J and Jemmis E D 2017 Contrasting Behavior of the Z Bonds in X-Z…Y Weak Interactions: Z = Main Group Elements Versus the Transition Metals Inorg. Chem. 56 1132

    Article  CAS  PubMed  Google Scholar 

  31. Metrangolo P, Murray J S, Pilati T, Politzer P, Resnati G and Terraneo G 2011 The fluorine atom as a halogen bond donor, viz. a positive site CrystEngComm 13 6593

  32. Metrangolo P, Murray J S, Pilati T, Politzer P, Resnati G and Terraneo G 2011 Fluorine-Centered Halogen Bonding: A Factor in Recognition Phenomena and Reactivity Cryst. Growth Des. 11 4238

    Article  CAS  Google Scholar 

  33. Bauzá A and Frontera A 2015 Aerogen Bonding Interaction: A New Supramolecular Force? Angew. Chem., Int. Ed. 54 7340

    Article  PubMed  CAS  Google Scholar 

  34. Bauza A and Frontera A 2015 Theoretical Study on the Dual Behavior of XeO3 and XeF4 toward Aromatic Rings: Lone Pair-pi versus Aerogen-p Interactions ChemPhysChem 16 3625

    Article  PubMed  CAS  Google Scholar 

  35. Zierkiewicz W, Michalczyk M and Scheiner S 2018 Regium bonds between Mn clusters (M = Cu, Ag, Au and n = 2–6) and nucleophiles NH3 and HCN Phys. Chem. Chem. Phys. 20 22498

    Article  CAS  Google Scholar 

  36. Frontera A and Bauzá A 2018 Regium–π bonds: An Unexplored Link between Noble Metal Nanoparticles and Aromatic Surfaces Chem. Eur. J. 24 7228

    Article  CAS  Google Scholar 

  37. Bauzá A and Frontera A 2018 Regium-π vs Cation-π Interactions in M2 and MCl (M = Cu, Ag and Au) Complexes with Small Aromatic Systems: An ab Initio Study Inorganics 6 64

  38. Stenlid J H and Brinck T 2017 Extending the σ-Hole Concept to Metals: An Electrostatic Interpretation of the Effects of Nanostructure in Gold and Platinum Catalysis J. Am. Chem. Soc. 139 11012

    Article  CAS  PubMed  Google Scholar 

  39. Cui J, Zhang X, Meng L, Li Q and Zeng Y 2019 Coinage metal dimers as the noncovalent interaction acceptors: study of the σ-lump interactions Phys. Chem. Chem. Phys. 21 21152

    Article  CAS  Google Scholar 

  40. Halldin Stenlid J, Johansson A J and Brinck T 2018 σ-Holes and σ-lumps direct the Lewis basic and acidic interactions of noble metal nanoparticles: introducing regium bonds Phys. Chem. Chem. Phys. 20 2676

    Article  CAS  Google Scholar 

  41. Werlé C, Bailly C, Karmazin-Brelot L, Le Goff X-F, Ricard L and Djukic J-P 2013 Hemichelation, a Way To Stabilize Electron-Unsaturated Complexes: The Case of T-Shaped Pd and Pt Metallacycles J. Am. Chem. Soc. 135 17839

    Article  PubMed  CAS  Google Scholar 

  42. Werlé C, Hamdaoui M, Bailly C, Le Goff X-F, Brelot L and Djukic J-P 2013 Electron-Deficient η1-Indenyl,η3-allylpalladium(II) Complexes Stabilized by Fluxional Non-covalent Interactions J. Am. Chem. Soc. 135 1715

    Article  PubMed  CAS  Google Scholar 

  43. Werlé C, Karmazin L, Bailly C, Ricard L and Djukic J-P 2015 Stabilization of an Electron-Unsaturated Pd(I)–Pd(I) Unit by Double Hemichelation Organometallics 34 3055

  44. Fleming M M, Pomeroy R K and Rushman P 1984 Dissociation and isomerization of (OC)5OsRu(CO)3(SiCl3)(Br), a compound with an osmium—ruthenium donor—acceptor bond J. Organomet. Chem. 273 C33

    Article  CAS  Google Scholar 

  45. Grimme S and Djukic J-P 2010 The Crucial Role of Dispersion in the Cohesion of Nonbridged Binuclear Os → Cr and Os → W Adducts Inorg. Chem. 49 2911

    CAS  Google Scholar 

  46. Schwabe T, Grimme S and Djukic J-P 2009 Noncovalent Metal−Metal Interactions: The Crucial Role of London Dispersion in a Bimetallic Indenyl System J. Am. Chem. Soc. 131 14156

    Article  CAS  PubMed  Google Scholar 

  47. Bonifaci C, Ceccon A, Santi S, Mealli C and Zoellner R W 1995 Cofacial and antarafacial indenyl bimetallic isomers: a descriptive MO picture and implications for the indenyl effect on ligand substitution reactions Inorg. Chim. Acta 240 541

    CAS  Google Scholar 

  48. Alvarez S, Alemany P, Aullon G, Palacios A and Novoa J 1995 Heterodox Bonding Effects between Transition Metal Atoms In: The Synergy Between Dynamics and Reactivity at Clusters and Surfaces L Farrugia (Ed.) (Netherlands: Springer) Vol. 465 p. 241

    Chapter  Google Scholar 

  49. Bowmaker G A, Pettinari C, Skelton B W, Somers N, Vigar N A and White A H 2007 Structures and Spectroscopy of some Adducts of Coinage Metal(I) Cyanides with ‘Tetrahedral’-Unidentate-N-Bases Z. Anorg. Allg. Chem. 633 415

    Article  CAS  Google Scholar 

  50. Bowmaker G A, Chaichit N, Pakawatchai C, Skelton B W and White A H 2008 Solvent-assisted mechanochemical synthesis of metal complexes Dalton Trans. 2926

  51. Marcos C, Alía J M, Adovasio V, Prieto M and García-Granda S 1998 Bis(thiourea)cadmium Halides Acta Cryst. C 54 1225

    Article  Google Scholar 

  52. Chieh C 1977 Synthesis and structure of dichlorobis(thiosemicarbazide)mercury(II) Can. J. Chem. 55 1583

    CAS  Google Scholar 

  53. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E N, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A P, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas Ö, Foresman J B, Ortiz J V, Cioslowski J and Fox D J, Gaussian 09, Revision D.01. Gaussian, Inc.: Wallingford CT, 2013

  54. te Velde G, Bickelhaupt F M, Baerends E J, Fonseca Guerra C, van Gisbergen S J A, Snijders J G and Ziegler T 2001 Chemistry with ADF J. Comput. Chem. 22 931

    Article  Google Scholar 

  55. Mitoraj M and Michalak A 2007 Natural orbitals for chemical valence as descriptors of chemical bonding in transition metal complexes J. Mol. Model. 13 347

    Article  CAS  PubMed  Google Scholar 

  56. Angarov V and Kozuch S 2018 On the σ, π and δ hole interactions: a molecular orbital overview New J. Chem. 42 1413

    CAS  Google Scholar 

  57. Murray J, Lane P and Politzer P 2009 Expansion of the σ-hole concept J. Mol. Model. 15 723

    Article  CAS  PubMed  Google Scholar 

  58. Bader R F W, Carroll M T, Cheeseman J R and Chang C 1987 Properties of atoms in molecules: atomic volumes J. Am. Chem. Soc. 109 7968

    Article  CAS  Google Scholar 

  59. Aiswaryalakshmi P, Mani D and Arunan E 2013 Fe as Hydrogen/Halogen Bond Acceptor in Square Pyramidal Fe(CO)5 Inorg. Chem. 52 9153

    CAS  Google Scholar 

  60. Pyykkö P 1979 Dirac-Fock One-Centre Calculations Part 8. The 1Σ States of ScH, YH, LaH, AcH, TmH, LuH and LrH Phys. Scripta 20 647

    Article  Google Scholar 

  61. Kaupp M 2007 The role of radial nodes of atomic orbitals for chemical bonding and the periodic table J. Comput. Chem. 28 320

    Article  CAS  PubMed  Google Scholar 

  62. Kaupp M 2014 Chemical Bonding of Main-Group Elements In: The Chemical Bond (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA) p.1

  63. Buijse M A and Baerends E J 1990 Analysis of nondynamical correlation in the metal–ligand bond. Pauli repulsion and orbital localization in MnO−4 J. Chem. Phys. 93 4129

    Article  CAS  Google Scholar 

  64. Pyykkö P 2012 The Physics behind Chemistry and the Periodic Table Chem. Rev. 112 371

    Google Scholar 

  65. Fraga S, Karwowski J and Saxena K M S 1976 Handbook of atomic data (Amsterdam: Elsevier Scientific)

    Google Scholar 

  66. Pyykko P 1995 Predicted Chemical Bonds between Rare Gases and Au+ J. Am. Chem. Soc. 117 2067

    Article  Google Scholar 

Download references

Acknowledgements

We thank IISc-Bangalore for computational facilities. EDJ thanks the Science and Engineering Research Board, Department of Science and Technology (DST) for the Year of Science Chair Professorship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eluvathingal D Jemmis.

Additional information

Special Issue on 150 years of the Periodic Table

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joy, J., Jemmis, E.D. Designing M-bond (X-M···Y, M = transition metal): σ-hole and radial density distribution. J Chem Sci 131, 117 (2019). https://doi.org/10.1007/s12039-019-1708-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-019-1708-4

Keywords

Navigation