Skip to main content

Advertisement

Log in

Influence of Feedstock Particle Size on Lignocellulose Conversion—A Review

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Feedstock particle sizing can impact the economics of cellulosic ethanol commercialization through its effects on conversion yield and energy cost. Past studies demonstrated that particle size influences biomass enzyme digestibility to a limited extent. Physical size reduction was able to increase conversion rates to maximum of ≈50%, whereas chemical modification achieved conversions of >70% regardless of biomass particle size. This suggests that (1) mechanical pretreatment by itself is insufficient to attain economically feasible biomass conversion, and, therefore, (2) necessary particle sizing needs to be determined in the context of thermochemical pretreatment employed for lignocellulose conversion. Studies of thermochemical pretreatments that have taken into account particle size as a factor have exhibited a wide range of maximal sizes (i.e., particle sizes below which no increase in pretreatment effectiveness, measured in terms of the enzymatic conversion resulting from the pretreatment, were observed) from <0.15 to 50 mm. Maximal sizes as defined above were dependent on the pretreatment employed, with maximal size range decreasing as follows: steam explosion > liquid hot water > dilute acid and base pretreatments. Maximal sizes also appeared dependent on feedstock, with herbaceous or grassy biomass exhibiting lower maximal size range (<3 mm) than woody biomass (>3 mm). Such trends, considered alongside the intensive energy requirement of size reduction processes, warrant a more systematic study of particle size effects across different pretreatment technologies and feedstock, as a requisite for optimizing the feedstock supply system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Perlack, R. D., Wright, L. L., Turhollow, A. F., Graham, R. L., Stokes, B. J., & Erbach, D. C. (2005). Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. Oak Ridge: Oak Ridge National Laboratory.

    Book  Google Scholar 

  2. Vertès, A. A., Inui, M., & Yukawa, H. (2008). Technological options for biological fuel ethanol. Journal of Molecular Microbiology and Biotechnology, 15, 16–30.

    Article  Google Scholar 

  3. Meunier-Goddik, L., Bothwell, M., Sangseethong, K., Piyachomkwan, K., Chung, Y.-C., Thammasouk, K., et al. (1999). Physicochemical properties of pretreated poplar feedstock during simultaneous saccharification and fermentation. Enzyme Microbial Technol, 24, 667–674.

    Article  CAS  Google Scholar 

  4. Mooney, C. A., Mansfield, S. D., Touhy, M. G., & Saddler, J. N. (1998). The effect of initial pore volume and lignin content on the enzymatic hydrolysis of softwoods. Bioresource Technology, 64, 113–119.

    Article  CAS  Google Scholar 

  5. Foust, T. D., Ibsen, K. N., Dayton, D. C., Hess, J. R., & Kenney, K. E. (2008). The biorefinery. In M. E. Himmel (Ed.), Biomass recalcitrance: deconstructing the plant cell wall for bioenergy (pp. 7–37). Oxford: Blackwell.

    Google Scholar 

  6. Zwart, R. W. R., Boerrigter, H., & van der Drift, A. (2006). The impact of biomass pretreatment on the feasibility of overseas biomass conversion to Fischer–Tropsch products. Energ Fuel, 20, 2192–2197.

    Article  CAS  Google Scholar 

  7. Mansfield, S. D., Mooney, C., & Saddler, J. N. (1999). Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnology Progress, 15, 804–816.

    Article  CAS  Google Scholar 

  8. Zhang, Y.-H. P., & Lynd, L. R. (2004). Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnology and Bioengineering, 88, 797–824.

    Article  CAS  Google Scholar 

  9. Ding, S.-Y., & Himmel, M. E. (2008). Anatomy and ultrastructure of maize cell walls: an example of energy plants. In M. E. Himmel (Ed.), Biomass recalcitrance: deconstructing the plant cell wall for bioenergy (pp. 38–60). Oxford: Blackwell.

    Google Scholar 

  10. Harris, P. J., & Stone, B. A. (2008). Chemistry and molecular organization of plant cell walls. In M. E. Himmel (Ed.), Biomass recalcitrance: deconstructing the plant cell wall for bioenergy (pp. 61–93). Oxford: Blackwell.

    Google Scholar 

  11. Chang, V. S., & Holtzapple, M. T. (2000). Fundamental factors affecting biomass enzymatic reactivity. Applied Biochemistry and Biotechnology, 84–86, 5–37.

    Article  Google Scholar 

  12. Sinitsyn, A. P., Gusakov, A. V., & Vlasenko, E. Y. (1991). Effect of structural and physico-chemical features of cellulosic substrates on the efficiency of enzymatic hydrolysis. Applied Biochemistry and Biotechnology, 30, 43–59.

    Article  CAS  Google Scholar 

  13. Grethlein, H. E. (1985). The effect of pore size distribution on the rate of enzymatic hydrolysis of cellulosic substrates. Biotechnol, 3, 155–160.

    Article  CAS  Google Scholar 

  14. Thompson, D. N., Chen, H. C., & Grethlein, H. E. (1992). Comparison of pretreatment methods on the basis of available surface area. Bioresource Technology, 39, 155–163.

    Article  CAS  Google Scholar 

  15. Gharpuray, M. M., Lee, Y.-H., & Fan, L. T. (1983). Structural modifications of lignocellulosics by pretreatment to enhance enzymatic hydrolysis. Biotechnology and Bioengineering, 25, 157–172.

    Article  CAS  Google Scholar 

  16. Himmel, M., Tucker, M., Baker, J., Rivard, C., Oh, K., & Grohmann, K. (1985). Comminution of biomass: hammer and knife mills. Biotechnology and Bioengineering Symposium, 15, 39–58.

    Google Scholar 

  17. Cadoche, L., & López, G. D. (1989). Assessment of size reduction as a preliminary step in the production of ethanol from lignocellulosic wastes. Biol Wastes, 30, 153–157.

    Article  CAS  Google Scholar 

  18. Schell, D. J., & Harwood, C. (1994). Milling of lignocellulosic biomass: results of pilot-scale testing. Applied Biochemistry and Biotechnology, 45(46), 159–168.

    Article  Google Scholar 

  19. Mani, S., Tabil, L. G., & Sokhansanj, S. (2004). Grinding performance and physical properties of wheat and barley straws, corn stover and switchgrass. Biomass and Bioenergy, 27, 339–352.

    Article  Google Scholar 

  20. Bitra, V. S. P., Womac, A. R., Chevanan, N., Miu, P. I., Igathinathane, C., Sokhansanj, S., et al. (2009). Direct mechanical energy measures of hammer mill comminution of switchgrass, wheat straw, and corn stover and analysis of their particle size distributions. Powder Technology, 193, 32–45.

    Article  CAS  Google Scholar 

  21. Esteban, L. S., & Carrasco, J. E. (2006). Evaluation of different strategies for pulverization of forest biomasses. Powder Technology, 166, 139–151.

    Article  CAS  Google Scholar 

  22. Aden, A., Ruth, M., Ibsen, K., Jechura, J., Neeves, K., Sheehan, J., et al. (2002). Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover. Golden: National Renewable Energy Laboratory.

    Book  Google Scholar 

  23. Holtzapple, M. T., Humphrey, A. E., & Taylor, J. D. (1989). Energy requirements for the size reduction of poplar and aspen wood. Biotechnology and Bioengineering, 33, 207–210.

    Article  CAS  Google Scholar 

  24. Zhu, J. Y., Wang, G. S., Pan, X. J., & Gleisner, R. (2009). Specific surface to evaluate the efficiencies of milling and pretreatment of wood for enzymatic saccharification. Chemical Engineering Science, 64, 474–485.

    Article  CAS  Google Scholar 

  25. Shewale, I. G., & Sadana, J. C. (1979). Enzymatic hydrolysis of cellulosic materials by Sclerotium rolfsii culture filtrate for sugar production. Canadian Journal of Microbiology, 25, 773–783.

    Article  CAS  Google Scholar 

  26. Weimer, P. J., & Weston, W. M. (1985). Relationship between the fine structure of native cellulose degradability by the cellulase complexes of Trichoderma reesei and Clostridium thermocellum. Biotechnology and Bioengineering, 27, 1540–1547.

    Article  CAS  Google Scholar 

  27. Puri, V. P. (1984). Effect of crystallinity and degree of polymerization of cellulose on enzymatic saccharification. Biotechnology and Bioengineering, 26, 1219–1222.

    Article  CAS  Google Scholar 

  28. Ryu, D. D. Y., Lee, S. B., Tassinari, T., & Macy, C. (1982). Effect of compression milling on cellulose structure and on enzymatic hydrolysis kinetics. Biotechnology and Bioengineering, 24, 1047–1067.

    Article  CAS  Google Scholar 

  29. Caulfield, D. F., & Moore, W. E. (1974). Effect of varying crystallinity of cellulose on enzymatic hydrolysis. Wood Sci, 6, 375–379.

    CAS  Google Scholar 

  30. Rivers, D. B., & Emert, G. H. (1987). Lignocellulose pretreatment: a comparison of wet and dry ball attrition. Biotechnological Letters, 9, 365–368.

    Article  CAS  Google Scholar 

  31. Rivers, D. B., & Emert, G. H. (1988). Factors affecting the enzymatic hydrolysis of municipal solid waste components. Biotechnology and Bioengineering, 26, 278–281.

    Article  Google Scholar 

  32. Rivers, D. B., & Emert, G. H. (1988). Factors affecting the enzymatic hydrolysis of bagasse and rice straw. Biol Wastes, 26, 85–95.

    Article  CAS  Google Scholar 

  33. Pordesimo, L. O., Ray, S. J., Buschermohle, M. J., Waller, J. C., & Wilkerson, J. B. (2005). Processing cotton gin trash to enhance in vitro dry matter digestibility in reduced time. Bioresource Technology, 96, 47–53.

    Article  CAS  Google Scholar 

  34. Düsterhöft, E.-M., Engels, F. M., & Voragen, A. G. J. (1993). Parameters affecting the enzymic hydrolysis of oil-seed meals, lignocellulosic by-products of the food industry. Bioresource Technology, 44, 39–46.

    Article  Google Scholar 

  35. Dasari, R. K., & Berson, R. E. (2007). The effect of particle size on hydrolysis reaction rates and rheological properties in cellulosic slurries. Applied Biochemistry and Biotechnology, 137, 289–299.

    Article  Google Scholar 

  36. Elshafei, A. M., Vega, J. L., Klasson, K. T., Clausen, E. C., & Gaddy, J. L. (1991). The saccharification of corn stover by cellulase from Penicillium funiculosum. Bioresource Technology, 35, 73–80.

    Article  CAS  Google Scholar 

  37. Mooney, C. A., Mansfield, S. D., Beatson, R. P., & Saddler, J. N. (1999). The effect of fiber characteristics on hydrolysis and cellulase accessibility to softwood substrates. Enzyme Microbial Technol, 25, 644–650.

    Article  CAS  Google Scholar 

  38. Jackson, L. S., Heitmann, J., & Joyce, T. (1993). Enzymatic modifications of secondary fibre. Tappi Journal, 76, 147–154.

    CAS  Google Scholar 

  39. Laivins, G. V., & Scallan, A. M. (1996). The influence of drying and beating on the swelling of fines. Journal of Pulp and Paper Science, 22, J178–J184.

    Google Scholar 

  40. Nazhad, M. M., Ramos, L. P., Paszner, L., & Saddler, J. N. (1995). Structural constraints affecting the initial enzymatic hydrolysis of recycled paper. Enzyme and Microbial Technology, 17, 68–74.

    Article  CAS  Google Scholar 

  41. Hendriks, A. T. W. M., & Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100, 10–18.

    Article  CAS  Google Scholar 

  42. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., et al. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96, 673–686.

    Article  CAS  Google Scholar 

  43. Eggeman, T., & Elander, R. T. (2005). Process and economic analysis of pretreatment technologies. Bioresource Technology, 96, 2019–2025.

    Article  CAS  Google Scholar 

  44. Chheda, J. N., Román-Leshkov, Y., & Dumesic, J. A. (2007). Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono- and poly-saccharides. Green Chemistry, 9, 342–350.

    Article  CAS  Google Scholar 

  45. Kim, S. B., & Lee, Y. Y. (2002). Diffusion of sulfuric acid within lignocellulosic biomass particles and its impact on dilute-acid pretreatment. Bioresource Technology, 83, 165–171.

    Article  CAS  Google Scholar 

  46. Carrasco, F., & Roy, C. (1992). Kinetic study of dilute-acid prehydrolysis of xylan-containing biomass. Wood Science and Technology, 26, 189–208.

    CAS  Google Scholar 

  47. Maloney, M. T. (1986). An engineering analysis of the production of xylose by dilute-acid hydrolysis of hardwood hemicellulose. Biotechnology Progress, 2, 192–202.

    Article  CAS  Google Scholar 

  48. Aguilar, R., Ramírez, J. A., Garrote, G., & Vázquez, M. (2002). Kinetic study of the acid hydrolysis of sugar cane bagasse. Journal of Food Engineering, 55, 309–318.

    Article  Google Scholar 

  49. Bhandari, N., MacDonald, D. G., & Bakhshi, N. N. (1984). Kinetic studies of corn stover saccharification using sulphuric acid. Biotechnology and Bioengineering, 26, 320–327.

    Article  CAS  Google Scholar 

  50. Brennan, A. H., Hoagland, W., & Schell, D. J. (1986). High temperature acid hydrolysis of biomass using an engineering-scale plug flow reactor: results of low solids testing. Biotechnology and Bioengineering Symposium, 17, 53–70.

    CAS  Google Scholar 

  51. Ranganathan, D. G., MacDonald, D. G., & Bakhshi, N. N. (1985). Kinetic studies of wheat straw hydrolysis using sulphuric acid. Canadian Journal of Chemical Engineering, 63, 840–844.

    Article  CAS  Google Scholar 

  52. Singh, A., Das, K., & Sharma, D. K. (1984). Production of xylose, furfural, fermentable sugars and ethanol from agricultural residues. Journal of Chemical Technology and Biotechnology, 34A, 51–61.

    CAS  Google Scholar 

  53. Springer, E. L. (1985). Prehydrolysis of hardwoods with dilute sulfuric acid. Industrial & Engineering Chemistry Product Research and Development, 24, 614–623.

    Article  CAS  Google Scholar 

  54. Yat, S. C., Berger, A., & Shonnard, D. R. (2008). Kinetic characterization for dilute sulfuric acid hydrolysis of timber varieties and switchgrass. Bioresource Technology, 99, 3855–3863.

    Article  CAS  Google Scholar 

  55. Hsu, T.-A., Himmel, M., Schell, D., Farmer, J., & Berggren, M. (1996). Design and initial operation of a high-solids, pilot-scale reactor for dilute-acid pretreatment of lignocellulosic biomass. Applied Biochemistry and Biotechnology, 57(58), 3–18.

    Article  Google Scholar 

  56. Mason WH. Process and apparatus for disintegration of wood and the like. US Patent 1,578,609;1926

  57. Brownell, H. H., Yu, E. K. C., & Saddler, J. N. (1986). Steam-explosion pretreatment of wood: effect of chip size, acid, moisture content and pressure drop. Biotechnology and Bioengineering, 28, 792–801.

    Article  CAS  Google Scholar 

  58. Gregg, D. J., & Saddler, J. N. (1996). Factors affecting cellulose hydrolysis and the potential of enzyme recycle to enhance the efficiency of an integrated wood to ethanol process. Biotechnology and Bioengineering, 51, 375–383.

    Article  CAS  Google Scholar 

  59. Cullis, I. F., Saddler, J. N., & Mansfield, S. D. (2004). Effect of initial moisture content and chip size on the bioconversion efficiency of softwood lignocellulosics. Biotechnology and Bioengineering, 85, 413–421.

    Article  CAS  Google Scholar 

  60. Ballesteros, I., Oliva, J. M., Navarro, A. A., Gonzalez, A., Carrasco, J., & Ballesteros, M. (2000). Effect of chip size on steam explosion pretreatment of softwood. Applied Biochemistry and Biotechnology, 84–86, 97–110.

    Article  Google Scholar 

  61. Ballesteros, I., Oliva, J. M., Negro, M. J., Manzanares, P., & Ballesteros, M. (2002). Enzymic hydrolysis of steam exploded herbaceous agricultural waste (Brassica carinata) at different particle sizes. Process Biochemistry, 38, 187–192.

    Article  CAS  Google Scholar 

  62. Negro, M. J., Manzanares, P., Ballesteros, I., Oliva, J. M., Cabañas, A., & Ballesteros, M. (2003). Hydrothermal pretreatment conditions to enhance ethanol production from poplar biomass. Applied Biochemistry and Biotechnology, 105–108, 87–100.

    Article  Google Scholar 

  63. van Walsum, G. P., Allen, S. G., Spencer, M. J., Laser, M. S., Antal, M. J., Jr., & Lynd, L. R. (1996). Conversion of lignocellulosics pretreated with liquid hot water to ethanol. Applied Biochemistry and Biotechnology, 57(58), 157–170.

    Article  Google Scholar 

  64. Laureano-Perez, L., Teymouri, F., Alizadeh, H., & Dale, B. E. (2005). Understanding factors that limit enzymatic hydrolysis of biomass: characterization of pretreated corn stover. Applied Biochemistry and Biotechnology, 121–124, 1081–1099.

    Article  Google Scholar 

  65. Chundawat, S. P. S., Venkatesh, B., & Dale, B. E. (2007). Effect of particle size based separation of milled corn stover on AFEX pretreatment and enzymatic digestibility. Biotechnology and Bioengineering, 96, 219–231.

    Article  CAS  Google Scholar 

  66. Moniruzzaman, M., Dale, B. E., Hespell, R. B., & Bothast, R. J. (1997). Enzymatic hydrolysis of high-moisture corn fiber pretreated by AFEX and recovery and recycling of the enzyme complex. Applied Biochemistry and Biotechnology, 67, 113–126.

    Article  CAS  Google Scholar 

  67. Chang, V. S., Burr, B., & Holtzapple, M. T. (1997). Lime pretreatment of switchgrass. Applied Biochemistry and Biotechnology, 63(65), 3–19.

    Article  Google Scholar 

  68. Li, Y., Ruan, R., Chen, P. L., Liu, Z., Pan, X., Lin, X., et al. (2004). Enzymatic hydrolysis of corn stover pretreated by combined dilute alkaline treatment and homogenization. T ASABE, 47, 821–825.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Singh.

Appendix

Appendix

Critical particle sizes for dilute acid pretreatment of different biomass calculated according to the proposed model of Kim and Lee [44]. Sulfuric acid concentration = 0.5% w/w; temperature = 180°C. Critical thickness and diameter are for plate and spherical geometry, respectively. Values for k were obtained using the Arrhenius expression model for hemicellulose degradation (single hemicellulose fraction approximation) with parameters obtained from published sources:

$$ k = {A_{\rm{o}}}{c^n}{e^{{\left( { - E/RT} \right)}}} $$
(1)
A o :

preexponential factor (c = 0)

c :

acid concentration (percent w/w)

n :

exponent parameter determined experimentally

E :

activation energy

R :

gas constant

T :

temperature

Critical size (mm)

Biomass

D e (10−5cm2s−1)

k (10−2 s−1)

(D e /k)0.5

Thickness

Diameter

k parameters source

Corn stover

2.27

0.80

0.53

1.06

3.19

[49]

Bagasse

1.48

5.83

0.16

0.32

0.96

[48]

Hardwood

1.24

1.69

0.27

0.54

1.63

[50]

Rice/wheat straw

9.49

7.10

0.37

0.73

2.19

[51]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vidal, B.C., Dien, B.S., Ting, K.C. et al. Influence of Feedstock Particle Size on Lignocellulose Conversion—A Review. Appl Biochem Biotechnol 164, 1405–1421 (2011). https://doi.org/10.1007/s12010-011-9221-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9221-3

Keywords

Navigation