Skip to main content
Log in

A Comparison Between Shaker and Bioreactor Performance Based on the Kinetic Parameters of Xanthan Gum Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Xanthan gum production was studied using sugarcane broth as the raw material and batch fermentation by Xanthomonas campestris pv. campestris NRRL B-1459. The purpose of this study was to optimize the variables of sucrose, yeast extract, and ammonium nitrate concentrations and to determine the kinetic parameters of this bioreaction under optimized conditions. The effects of yeast extract and ammonium nitrate concentrations for a given sucrose concentration (12.1–37.8 g L−1) were evaluated by central composite design to maximize the conversion efficiency. In a bioreactor, the maximum conversion efficiency was achieved using 27.0 g L−1 sucrose, 2.7 g L−1 yeast extract, and 0.9 g L−1 NH4NO3. This point was assayed in a shaker and in a bioreactor to compare bioreaction parameters. These parameters were estimated by the unstructured kinetic model of Weiss and Ollis (Biotechnol Bioeng 22:859–873, 1980) to determinate the yields (Y P/S), the maximum growth specific rate (μ max), and the saturation cellular concentration (X*). The parameters of the model (μ max, X*, m, λ, α, and β) were obtained by nonlinear regression. For production of xanthan gum in a shaker, the values of μ max and Y P/S obtained were 0.119 h−1 and 0.34 g g−1, respectively, while in a bioreactor, they were 0.411 h−1 and 0.63 g g−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mulchandani, A., Luong, J. H. T., & Leduy, A. (1988). Biotechnology and Bioengineering, 32, 639–646. doi:10.1002/bit.260320508.

    Article  CAS  Google Scholar 

  2. Ashtaputre, A. A., & Shah, A. K. (1995). Applied and Environmental Microbiology, 61(3), 1159–1162.

    CAS  Google Scholar 

  3. García-Ochoa, F., Santos, V. E., Casas, J. A., & Gómez, E. (2000). Biotechnology Advances, 18, 549–579. doi:10.1016/S0734-9750(00)00050-1.

    Article  Google Scholar 

  4. Pradella, J. G. C. (2006) Biopolímeros e Intermediários Químicos, Centro de Gestão e Estudos Estratégicos, Relatório Técnico no 84 396–205, Laboratório de Biotecnologia Industrial—LBI/CTPP, São Paulo, pp. 119.

  5. Skaracis, G. N., Kalogiannis, S., & Iakovidou, G. (2003). Process Biochemistry, 39, 249–256. doi:10.1016/S0032-9592(03)00067-0.

    Article  Google Scholar 

  6. Harcum, S. W., & Yoo, S. D. (1999). Bioresource Technology, 70, 105–109 short communication. doi:10.1016/S0960-8524(99)00013-9.

    Article  Google Scholar 

  7. Moraine, R. A., & Rogovin, P. (1971). Biotechnology and Bioengineering, 13, 381–391. doi:10.1002/bit.260130305.

    Article  CAS  Google Scholar 

  8. De Vuyst, L., Vermiere, A., Van Loo, J., & Vandamme, E. J. (1987). Mededelingen van de Faculteit landbouwwetenschappen—Rijksuniversiteit Gent, 52, 1881–1900.

    Google Scholar 

  9. Pons, A., Dussap, C. G., & Gros, J. B. (1990). Bioprocess Engineering, 5, 107–114. doi:10.1007/BF00388188.

    Article  CAS  Google Scholar 

  10. García-Ochoa, F., Santos, V. E., & Alcon, A. (1995). Enzyme and Microbial Technology, 17, 206–217. doi:10.1016/0141-0229(94)00009-G.

    Article  Google Scholar 

  11. Letisse, F., Lindley, N. D., & Roux, G. (2003). Biotechnology Progress, 19, 822–827. doi:10.1021/bp0257168.

    Article  CAS  Google Scholar 

  12. Cadmus, M. C., Knutson, C. A., Lagoda, A. A., Pittsley, J. E., & Burton, K. A. (1978). Biotechnology and Bioengineering, 20, 1003–1014. doi:10.1002/bit.260200703.

    Article  CAS  Google Scholar 

  13. Margaritis, A., & Zajic, J. E. (1978). Biotechnology and Bioengineering, 20, 939–1001. doi:10.1002/bit.260200702.

    Article  CAS  Google Scholar 

  14. Pinches, A., & Pallent, L. J. (1986). Biotechnology and Bioengineering, 28, 1484–1496. doi:10.1002/bit.260281006.

    Article  CAS  Google Scholar 

  15. Souw, P., & Demain, A. L. (1980). Journal of Fermentation Technology, 58, 411–416.

    CAS  Google Scholar 

  16. Nakajima, S., Funahashi, H., & Yoshida, T. (1990). Journal of Fermentation and Bioengineering, 70(6), 392–397. doi:10.1016/0922-338X(90)90120-L.

    Article  CAS  Google Scholar 

  17. Alves, R. S. A. (1991), Dissertação, Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.

  18. De Vuyst, L., & Vermeire, A. (1994). Applied Microbiology and Biotechnology, 42, 187–191.

    Google Scholar 

  19. Umasankar, H., Annadurai, G., Chellapandian, M., et al. (1996). Bioprocess Engineering, 14(6), 307–309. doi:10.1007/BF00369474.

    Article  Google Scholar 

  20. Lima, M. A. G. A. (1999) Tese de doutorado, Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.

  21. Serrano-Carreón, L., Corona, R. M., Sánchez, A., & Galindo, E. (1998). Process Biochemistry, 33(2), 133–146. doi:10.1016/S0032-9592(97)00039-3.

    Article  Google Scholar 

  22. Amanullah, A., Satti, S., & Nienow, A. W. (1998). Biotechnology Progress, 14, 265–269. doi:10.1021/bp9800079.

    Article  CAS  Google Scholar 

  23. Shu, C.-H., & Yang, S.-T. (1990). Biotechnology and Bioengineering, 35, 454–468. doi:10.1002/bit.260350503.

    Article  CAS  Google Scholar 

  24. Ramírez, M. E., Fucikovsky, L., García-Jiménez, F., et al. (1988). Applied Microbiology and Biotechnology, 29, 5–10. doi:10.1007/BF00258343.

    Article  Google Scholar 

  25. Chhabra, R. P., Richardson, J. F. (1999). Non-Newtonian flow in the process industries fundamentals and engineering applications p. 436. Great Britain: Butterworth Heinemann.

    Google Scholar 

  26. Marquardt, D. W. (1963). Journal of the Society for Industrial and Applied Mathematics, 11, 431–441. doi:10.1137/0111030.

    Article  Google Scholar 

  27. Gill, S. (1951). A process for the step-by-step integration of differential equations in an automatic computing machine. Proceedings of the Cambridge Philosophical Society, 47, 96–108. doi:10.1017/S0305004100026414.

    Article  Google Scholar 

  28. Weiss, R. M., & Ollis, D. F. (1980). Biotechnology and Bioengineering, 22, 859–873. doi:10.1002/bit.260220410.

    Article  CAS  Google Scholar 

  29. Luedeking, R., & Piret, E. L. (1959). Journal of Biochemical and Microbiological Technology and Engineering, 1, 393–412. doi:10.1002/jbmte.390010406.

    Article  CAS  Google Scholar 

  30. Borzani, W. (2001). Engenharia bioquímica. In W. Borzani, U. A. Lima, E. Aquarone, & W. Schmidell (Eds.), Biotecnologia Industrial, v. 2(1st ed.). São Paulo: Blücher.

    Google Scholar 

  31. El-Salam, M. H. A., Fadel, M. A., & Murad, H. A. (1994). Journal of Biotechnology, 33, 103–106. doi:10.1016/0168-1656(94)90103-1.

    Article  Google Scholar 

  32. García-Ochoa, F., García-León, M. A., & Romero, A. (1990). Chemical and biochemical engineering, 4, 15–20.

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank the CNPq and FAPEMIG—Brazil—for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Cardoso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faria, S., Vieira, P.A., Resende, M.M. et al. A Comparison Between Shaker and Bioreactor Performance Based on the Kinetic Parameters of Xanthan Gum Production. Appl Biochem Biotechnol 156, 45–58 (2009). https://doi.org/10.1007/s12010-008-8485-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8485-8

Keywords

Navigation