Skip to main content

Advertisement

Log in

Hereditary Multiple Exostoses: New Insights into Pathogenesis, Clinical Complications, and Potential Treatments

  • Rare Bone Diseases (C Langman and E Shore, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Hereditary multiple exostoses (HME) is a complex musculoskeletal pediatric disorder characterized by osteochondromas that form next to the growth plates of many skeletal elements, including long bones, ribs, and vertebrae. Due to its intricacies and unresolved issues, HME continues to pose major challenges to both clinicians and biomedical researchers. The purpose of this review is to describe and analyze recent advances in this field and point to possible targets and strategies for future biologically based therapeutic intervention.

Recent Findings

Most HME cases are linked to loss-of-function mutations in EXT1 or EXT2 that encode glycosyltransferases responsible for heparan sulfate (HS) synthesis, leading to HS deficiency. Recent genomic inquiries have extended those findings but have yet to provide a definitive genotype-phenotype correlation. Clinical studies emphasize that in addition to the well-known skeletal problems caused by osteochondromas, HME patients can experience, and suffer from, other symptoms and health complications such as chronic pain and nerve impingement. Laboratory work has produced novel insights into alterations in cellular and molecular mechanisms instigated by HS deficiency and subtending onset and growth of osteochondroma and how such changes could be targeted toward therapeutic ends.

Summary

HME is a rare and orphan disease and, as such, is being studied only by a handful of clinical and basic investigators. Despite this limitation, significant advances have been made in the last few years, and the future bodes well for deciphering more thoroughly its pathogenesis and, in turn, identifying the most effective treatment for osteochondroma prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Luckert Wicklund CL, Pauli RM, Johnson DR, Hecht JT. Natural history of hereditary multiple exostoses. Am J Med Genet. 1995;55:43–6.

    Article  Google Scholar 

  2. Schmale GA, Conrad EU, Raskind WH. The natural history of hereditary multiple exostoses. J Bone Joint Surg Am. 1994;76:986–92.

    Article  CAS  PubMed  Google Scholar 

  3. Solomon L. Hereditary multiple exostosis. J Bone Joint Surg. 1963;45B:292–304.

    Google Scholar 

  4. Stieber JR, Dormans JP. Manifestations of hereditary multiple exostoses. J Am Acad Orthop Surg. 2005;13:110–20.

    Article  PubMed  Google Scholar 

  5. Uchida K, Kurihara Y, Sekiguchi S, Doi Y, Matsuda K, Miyanaga M, et al. Spontaneous haemothorax caused by costal exostosis. Eur Respir J. 1997;10:735–6.

    CAS  PubMed  Google Scholar 

  6. Dormans JP. Pediatric orthopaedics: core knowledge in orthopaedics. Philadelphia: Elsevier Mosby; 2005.

    Google Scholar 

  7. Jones KB. Glycobiology and the growth plate: current concepts in multiple hereditary exostoses. J Pediatr Orthop. 2011;31:577–86.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Porter DE, Lonie L, Fraser M, Dobson-Stone C, Porter JR, Monaco AP, et al. Severity of disease and risk in malignant change in hereditary multiple exostoses. J Bone Joint Surg Br. 2004;86:1041–6.

    Article  CAS  PubMed  Google Scholar 

  9. Porter DE, Simpson AHRW. The neoplastic pathogenesis of solitary and multiple osteochondromas. J Pathol. 1999;188:119–25.

    Article  CAS  PubMed  Google Scholar 

  10. Ahn J, Ludecke HJ, Lindow S, Horton WA, Lee B, Wagner MJ, et al. Cloning of the putative tumour suppressor gene for hereditary multiple exostoses (EXT1). Nat Genet. 1995;11:137–43.

    Article  CAS  PubMed  Google Scholar 

  11. Cheung PK, McCormick C, Crawford BE, Esko JD, Tufaro F, Duncan G. Etiological point mutations in the hereditary multiple exostoses gene EXT1: a functional analysis of heparan sulfate polymerase activity. Am J Hum Genet. 2001;69:55–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hecht JT, Hogue D, Strong LC, Hansen MF, Blanton SH, Wagner H. Hereditary multiple exostosis and chondrosarcoma: linkage to chromosome 11 and loss of heterozygosity for EXT-linked markers on chromosome 11 and 8. Am J Hum Genet. 1995;56:1125–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Wuyts W, Van Hul W. Molecular basis of multiple exostoses: mutations in the EXT1 and EXT2 genes. Hum Mutat. 2000;15:220–7.

    Article  CAS  PubMed  Google Scholar 

  14. Bishop JR, Schuksz M, Esko JD. Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature. 2007;446:1030–7.

    Article  CAS  PubMed  Google Scholar 

  15. Esko JD, Selleck SB. Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem. 2002;71:435–71.

    Article  CAS  PubMed  Google Scholar 

  16. McCormick C, Duncan G, Goutsos KT, Tufaro F. The putative tumor suppressors EXT1 and EXT2 form a stable complex that accumulates in the Golgi complex and catalyzes the synthesis of heparan sulfate. Proc Natl Acad Sci U S A. 2000;97:668–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Anower-E-Khuda MF, Matsumoto K, Habuchi H, Morita H, Yokochi T, Shimizu K, et al. Glycosaminoglycans in the blood of hereditary multiple exostoses patients: half reduction of heparan sulfate to chondroitin sulfate ratio and the possible diagnostic application. Glycobiology. 2013;23:865–76.

    Article  CAS  PubMed  Google Scholar 

  18. •• Mooij HL, BernelotMoens SJ, Gordts PL, Stanford KI, Foley EM, van den Boogert MA, et al. Ext1 heterozygosity causes a modest effect on postprandial lipid clearance in humans. J Lipid Res. 2015;56:665–73. This paper shows for the first time that EXT1 heterozygosity itself can affect nonskeletal functions in HME patients.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huegel J, Sgariglia F, Enomoto-Iwamoto M, Koyama E, Dormans JP, Pacifici M. Heparan sulfate in skeletal development, growth, and pathology: the case of hereditary multiple exostoses. Dev Dyn. 2013;242:1021–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Knudson A. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A. 1971;68:820–3.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bovee JV, Cleton-Jansen A-M, Wuyts W, Caethoven G, Taminiau AH, Bakker E, et al. EXT-mutation analysis and loss of heterozygosity in sporadic and hereditary osteochondromas and secondary chondrosarcoma. Am J Hum Genet. 1999;65:689–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hameetman L, Szuhai K, Yavas A, Knijnenburg J, van Duin M, van Dekken H, et al. The role of EXT1 in nonhereditary osteochondroma: identification of homozygous deletions. J Natl Cancer Inst. 2007;99:396–406.

    Article  CAS  PubMed  Google Scholar 

  23. Reijnders CM, Waaijer CJ, Hamilton A, Buddingh EP, Dijkstra SP, Ham J, et al. No haploinsufficiency but loss of heterozygosity for EXT in multiple osteochondromas. Am J Path. 2010;177:1946–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bernard MA, Hall CE, Hogue DA, Cole WG, Scott A, Snuggs MB, et al. Diminished levels of the putative tumor suppressor proteins EXT1 and EXT2 in exostosis chondrocytes. Cell Motil Cytoskeleton. 2001;48:149–62.

    Article  CAS  PubMed  Google Scholar 

  25. Hall CR, Cole WG, Haynes R, Hecht JT. Reevaluation of a genetic model for the development of exostoses in hereditary multiple exostosis. Am J Med Genet. 2002;112:1–5.

    Article  PubMed  Google Scholar 

  26. Jennes I, Pedrini E, Zuntini M, Mordenti M, Balkassmi S, Asteggiano CG, et al. Multiple osteochondromas: mutation update and description of the multiple osteochondromas mutation database (MOdb). Hum Mutat. 2009;30:1620–7.

    Article  CAS  PubMed  Google Scholar 

  27. Zuntini M, Pedrini E, Parra A, Sgariglia F, Gentile FV, Pandolfi M, et al. Genetic models of osteochondroma onset and neoplastic progression: evidence for mechanisms alternative to EXT genes inactivation. Oncogene. 2010;29:3827–34.

    Article  CAS  PubMed  Google Scholar 

  28. Stickens D, Zak BM, Rougier N, Esko JD, Werb Z. Mice deficient in Ext2 lack heparan sulfate and develop exostoses. Development. 2005;132:5055–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. •• Zak BM, Schuksz M, Koyama E, Mundy C, Wells DE, Yamaguchi Y, et al. Compound heterozygous loss of Ext1 and Ext2 is sufficient for formation of multiple exostoses in mouse ribs and long bones. Bone. 2011;48:979–87. This paper shows for the first time that compound heterozygous Ext mutations are sufficient to cause an HME-like phenotype in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. •• Jones KB, Piombo V, Searby C, Kurriger G, Yang B, Grabellus F, et al. A mouse model of osteochondromagenesis from clonal inactivation of Ext1 in chondrocytes. Proc Natl Acad Sci U S A. 2010;107:2054–9. This paper has provided the most direct evidence to date that stocastic loss of Ext1 alleles in a few cells is sufficient to elicit osteochondormal formation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. •• Matsumoto K, Irie F, Mackem S, Yamaguchi Y. A mouse model of chondrocyte-specific somatic mutation reveals a role for Ext1 loss of heterozygosity in multiple hereditary exostoses. Proc Natl Acad Sci U S A. 2010;107:10932–7. This concurrent paper has provided the most direct evidence to date that stocastic loss of Ext1 alleles in a few cells is sufficient to elicit osteochondormal formation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sgariglia F, Candela ME, Huegel J, Jacenko O, Koyama E, Yamaguchi Y, et al. Epiphyseal abnormalities, trabecular bone loss and articular chondrocyte hypertrophy develop in the long bones of postnatal Ext1-deficient mice. Bone. 2013;57:220–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sarrazin S, Lamanna WC, Esko JD. Heparan sulfate proteoglycans. Cold Spring Harb Prospect Biol. 2011;3:a004952.

    Google Scholar 

  34. Dhoot GK, Gustafsson MK, Ai X, Sun W, Standiford DM, Emerson CP. Regulation of Wnt signaling and embryo patterning by an extracellular sulfatase. Science. 2001;293:1663–6.

    Article  CAS  PubMed  Google Scholar 

  35. Morimoto-Tomita M, Uchimura K, Werb Z, Hemmerich S, Rosen SD. Cloning and characterization of two extracellular heparin-degrading endosulfatases in mouse and human. J Biol Chem. 2002;277:49175–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Billings PC, Pacifici M. Interactions of signaling proteins, growth factors and other proteins with heparan sulfate: mechanisms and mysteries. Connect Tissue Res. 2015;56:272–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lin X. Functions of heparan sulfate proteoglycans in cell signaling during development. Development. 2004;131:6009–21.

    Article  CAS  PubMed  Google Scholar 

  38. Xu D, Esko JD. Demystifying heparan sulfate-protein interactions. Annu Rev Biochem. 2014;83:129–57.

    Article  CAS  PubMed  Google Scholar 

  39. Koziel L, Kunath M, Kelly OG, Vortkamp A. Ext1-dependent heparan sulfate regulates the range of Ihh signaling during endochondral ossification. Dev Cell. 2004;6:801–13.

    Article  CAS  PubMed  Google Scholar 

  40. Huegel J, Mundy C, Sgariglia F, Nygren P, Billings PC, Yamaguchi Y, et al. Perichondrium phenotype and border function are regulated by Ext1 and heparan sulfate in developing long bones: a mechanism likely deranged in hereditary multiple exostoses. Dev Biol. 2013;377:100–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Clement ND, Duckworth AD, Baker AD, Porter DE. Skeletal growth patterns in hereditary multiple exostoses: a natural history. J Pediatr Orthop. 2012;B21:150–4.

    Article  Google Scholar 

  42. Clement ND, Porter DE. Hereditary multiple exostoses: anatomical distribution and burden of exostoses is dependent upon genotype and gender. Scottish Med J. 2014;59:34–44.

    Article  Google Scholar 

  43. Porter DE, Benson MK, Hosney GA. The hip in hereditary multiple exostoses. J Bone Joint Surg Br. 2001;83:988–95.

    Article  CAS  PubMed  Google Scholar 

  44. Wang YZ, Park K-W, Oh C-S, Ahn Y-S, Kang Q-L, Jung ST, et al. Developmental pattern of the hip in patients with hereditary multiple exostoses. BMC Musculoskelet Disord. 2015;16:54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Roach JW, Klatt JWB, Faulkner ND. Involvement of the spine in patients with multiple hereditary exostoses. J Bone Joint Surg. 2009;91:1942–8.

    Article  PubMed  Google Scholar 

  46. • Matsumoto Y, Matsumoto K, Harimaya K, Okada S, Doi T, Iwamoto Y. Scoliosis in patients with multiple hereditary exostoses. Eur Spine J. 2015;24:1568–73. This paper is the first to suggest that scoliosis may be more pervasive than previously thought in HME patients.

    Article  PubMed  Google Scholar 

  47. Felix NA, Mazur JM, Loveless EA. Acetabular dysplasia associated with hereditary multiple exostoses. A case report. J Bone Joint Surg Br. 2000;82:555–7.

    Article  CAS  PubMed  Google Scholar 

  48. Hosalkar H, Greenberg J, Gaugler RL, Garg S, Dormans JP. Abnormal scarring with keloid formation after osteochondroma excision in children with multiple hereditary exostoses. J Pediatr Orthop. 2007;27:333–7.

    Article  PubMed  Google Scholar 

  49. •• Goud AL, de Lange J, Scholtes VA, Bulstra SK, Ham SJ. Pain, physical and social functioning, and quality of life in individuals with multiple hereditary exostoses in The Netherlands: a national cohort study. J Bone Joint Surg Am. 2012;94:1013–20. This paper represents one of the most extensive and attentive analysis of physicial, social and personal difficulties experienced by HME patients.

    Article  CAS  PubMed  Google Scholar 

  50. Chhina H, Davis J, Alvarez CM. Health-related quality of life in people with hereditary multiple exostoses. J Pediatr Orthopaedics. 2012;32:210–4.

    Article  Google Scholar 

  51. Arkader A. Multiple hereditary exostoses: its burden on childhood and beyond. J Bone Joint Surg. 2012;94:e81.

    Article  PubMed  Google Scholar 

  52. Hays RD, Morales LS. The RAND-36 measure of health-related quality of life. Annu Med. 2001;33:350–7.

    Article  CAS  Google Scholar 

  53. Ashraf A, Larson AN, Ferski G, Mielke CH, Wetjen NM, Guidera KJ. Spinal stenosis frequent in children with multiple hereditary exostoses. J Child Orthop. 2013;7:183–94.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Oestreich AT, Huslig EL. Hereditary multiple exostosis: another etiology of short leg and scoliosis. J Manip Physiol Ther. 1985;8:267–9.

    CAS  Google Scholar 

  55. King HA, Moe JH, Bradford DS, Winter RB. The selection of fusion levels in thoracic idiopathic scoliosis. J Bone Joint Surg Am. 1983;65:1302–12.

    Article  CAS  PubMed  Google Scholar 

  56. Lind T, Tufaro F, McCormick C, Lindahl U, Lidholt K. The putative tumor suppressors EXT1 and EXT2 are glycosyltransferases required for the biosynthesis of heparan sulfate. J Biol Chem. 1998;273:26265–8.

    Article  CAS  PubMed  Google Scholar 

  57. McCormick C, Leduc Y, Martindale D, Mattison K, Esford L, Dyer A, et al. The putative tumor suppressor EXT1 alters the expression of cell-surface heparan sulfate. Nat Genet. 1998;19:158–61.

    Article  CAS  PubMed  Google Scholar 

  58. Busse-Wicher M, Wicher KB, Kusche-Gullberg M. The exostosin family: proteins with many functions. Matrix Biol. 2014;35:25–33.

    Article  CAS  PubMed  Google Scholar 

  59. Alvarez C, De Vera MA, Heslip TR, Casey B. Evaluation of the anatomical burden of patients with hereditary multiple exostoses. Clin Orth Relat Res. 2007;462:73–9.

    Article  Google Scholar 

  60. Alvarez C, Tredwell S, De Vera M, Hayden M. The genotype-phenotype correlation of hereditary multiple exostoses. Clin Genet. 2006;70:122–30.

    Article  CAS  PubMed  Google Scholar 

  61. Pedrini E, Jennes I, Tremosini M, Milanesi A, Mordenti M, Parra A, et al. Genotype-phenotype correlation study in 529 patients with hereditary multiple exostoses: identification of “protective” and “risk” factors. J Bone Joint Surg. 2011;93:2294–302.

    Article  PubMed  Google Scholar 

  62. Ishimaru D, Gotch M, Takayama S, Kosaki R, Matsumoto Y, Narimatsu H, et al. Large-scale mutational analysis in the EXT1 and EXT2 genes for Japanese patients with multiple osteochondromas. BMC Genet. 2016;17:52.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Sarrion P, Sangorrin A, Urreizti R, Delgado A, Artuch R, Mantorell L, et al. Mutations in the EXT1 and EXT2 genes in Spanish patients with multiple osteochondromas. Sci Rep. 2013;3:1346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jamsheer M, Socha M, Sowinska-Seidler A, Telega K, Trzeciak T, Latos-Bielenska A. Mutational screening of EXT1 and EXT2 genes in Polish patients with hereditary multiple exostoses. J Appl Genet. 2014;55:183–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ciavarella M, Coco M, Baorda F, Stanziale P, Chetta M, Bisceglia L, et al. 20 novel point mutations and one large deletion in EXT1 and EXT2 genes: report of diagnostic screening in a large Italian cohort of patients affected by hereditary multiple exostosis. Gene. 2013;515:339–48.

    Article  CAS  PubMed  Google Scholar 

  66. Knudson AG. Hereditary cancer: two hits revisited. J Cancer Res Clin Oncol. 1996;122:135–40.

    Article  CAS  PubMed  Google Scholar 

  67. Joseph CG, Darrah E, Shah AA, Skora AD, Casciola-Rosen LA, Wigley FW, et al. Association of the autoimmune disease scherederma with an immunologic response to cancer. Science. 2014;343:152–7.

    Article  CAS  PubMed  Google Scholar 

  68. •• Irie F, Badie-Mahdavi H, Yamaguchi Y. Autism-like socio-communicative deficits and stereotypies in mice lacking heparan sulfate. Proc Natl Acad Sci U S A. 2012;109:5052–6. This paper is the first to show that conditional ablation of Ext1 in brain cells can cause symptoms of autism in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. •• Cousminer DL, Arkader A, Voight BF, Pacifici M, Grant SFA. Assessing the general population frequency of rare coding variants in the EXT1 and EXT2 genes previously implicated in hereditary multiple exostoses. Bone. 2016;92:196–200. This paper is the first to suggest that some EXT missense mutations previously linked to HME may actually be variants with little if any pathogenic relevance.

    Article  CAS  PubMed  Google Scholar 

  70. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hecht JT, Hayes E, Haynes R, Cole GC, Long RJ, Farach-Carson MC, et al. Differentiation-induced loss of heparan sulfate in human exostosis derived chondrocytes. Differentiation. 2005;73:212–21.

    Article  CAS  PubMed  Google Scholar 

  72. Colnot C, Lu C, Hu D, Helms JA. Distinguishing the contributions of the perichondrium, cartilage, and vascular endothelium to skeletal development. Dev Biol. 2004;269:55–69.

    Article  CAS  PubMed  Google Scholar 

  73. Lam KP, Rajewsky K. Rapid elimination of mature autoreactive B cells demonstrated by Cre-induced change in B cell antigen receptor specificity in vivo. Proc Natl Acad Sci U S A. 1998;95:13171–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ono N, Ono W, Nagasawa T, Kronenberg HM. A subset of chondrogenic cells provides early mesenchymal progenitors in growing bones. Nat Cell Biol. 2014;16:1157–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Maes C, Kobayashi A, Kronenberg HM. A novel transgenic mous emodel to stuudy the osteoblast lineage in vivo. Ann N Y Acad Sci. 2007;1116:1490164.

    Article  Google Scholar 

  76. Nakamura E, Nguyen M-T, Mackem S. Kinetics of tamoxifen-regulated Cre activity in mice using a cartilage-specific CreERT to assay temporal activity windows along the proximodistal limb skeleton. Dev Dyn. 2006;235:2603–12.

    Article  CAS  PubMed  Google Scholar 

  77. Schuksz M, Fuster MM, Brown JR, Crawford BE, Ditto DP, Lawrence R, et al. Surfen, a small molecule antagonist of heparan sulfate. Proc Natl Acad Sci U S A. 2008;105:13075–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Salazar VS, Gamer LW, Rosen V. BMP signaling in skeletal development, disease and repair. Nat Rev Endocrinol. 2016;12:203–21.

    Article  CAS  PubMed  Google Scholar 

  79. Buckland RA, Collinson JM, Graham E, Davidson DR, Hill RE. Antagonistic effects of FGF4 on BMP induction of apoptosis and chondrogenesis in the chick limb bud. Mech Dev. 1998;71:143–50.

    Article  CAS  PubMed  Google Scholar 

  80. Ornitz DM, Marie PJ. Fibroblast growth factor signaling in skeletal development and disease. Genes Dev. 2015;29:1463–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yoon BS, Pogue R, Ovchinnikov DA, Yoshii I, Mishina Y, Behringer RR, et al. BMPs regulate multiple aspects of growth plate chondrogenesis through opposing actions of FGF pathways. Development. 2006;133:4667–78.

    Article  CAS  PubMed  Google Scholar 

  82. Hulett MD, Freeman C, Hamdorf BJ, Baker RT, Harris MJ, Parish CR. Cloning of mammalian heparanase: an important enzyme in tumor invasion and metastasis. Nat Med. 1999;5:183–7.

    Article  Google Scholar 

  83. Zetser A, Bashenko Y, Miao HQ, Vlodavsky I, Ilan N. Heparanase affects adhesive and tumorigenic potential of human glioma cells. Cancer Res. 2003;63:7733–41.

    CAS  PubMed  Google Scholar 

  84. Quiros RM, Rao G, Plate J, Harris JE, Brunn GJ, Platt JL, et al. Elevated serum heparanase-1 levels in patients with pancreatic carcinoma are associated with poor survival. Cancer. 2006;106:532–40.

    Article  CAS  PubMed  Google Scholar 

  85. •• Trebicz-Geffen M, Robinson D, Evron Z, Glaser T, Fridkin M, Kollander Y, et al. The molecular and cellular basis of exostosis formation in hereditary multiple exostoses. Int J Exp Path. 2008;89:321–31. This paper is the first to show that heparanase is up-regulated in osteochondromas from HME patients.

    Article  CAS  Google Scholar 

  86. •• Huegel J, Enomoto-Iwamoto M, Sgariglia F, Koyama E, Pacifici M. Heparanase stimulates chondrogenesis and is up-regulated in human ectopic cartilage. A mechanism possibly involved in hereditary multiple exostoses. Am J Path. 2015;185:1676–85. This paper verifies that heparanase is up-regulated in osteochondromas from HME patients and is the first to show that human heparanase stimulates chondrogenesis while a heparanase inhibitor inhibits it, indicating that this enzyme could be a therapeutic target.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ritchie JP, Ramani VC, Ren Y, Naggi A, Torri G, Casu B, et al. SST0001, a chemically modified heparin, inhibits myeloma growth and angiogenesis via disruption of the heparanase/syndecan-1 shedding: a novel mechanism for stimulation of tumor growth and metastasis. Clin Cancer Res. 2011;17:1382–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Matsumoto Y, Matsumoto K, Irie F, Fukushi J-I, Stallcup WB, Yamaguchi Y. Conditional ablation of the heparan sulfate-synthesizing enzyme Ext1 leads to dysregulation of bone morphogenetic protein signaling and severe skeletal defects. J Biol Chem. 2010;285:19227–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Koyama E, Young B, Nagayama M, Shibukawa Y, Enomoto-Iwamoto M, Iwamoto M, et al. Conditional Kif3a ablation causes abnormal hedgehog signaling topography, growth plate dysfunction, and excessive bone and cartilage formation during mouse skeletogenesis. Development. 2007;134:2159–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mundy C, Bello A, Sgariglia F, Koyama E, Pacifici M. HhAntag, a hedgehog signaling antagonist, suppresses chondrogenesis and modulates canonical and non-canonical BMP signaling. J Cell Physiol. 2016;231:1033–44.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The original studies in the author’s laboratory upon which this review is based were supported by the NIAMS grant R01AR06175. The author expresses his gratitude to the many colleagues participating in those studies, to collaborators providing reagents and mouse lines, and to Dr. E. Koyama in particular for contribution to Fig. 1 model. Due to the concise nature of this review, not all relevant and deserving literature and authors could be cited. The author would like to acknowledge the passionate efforts of the Multiple Hereditary Exostoses Research Foundation (http://www.mherf.org/), a private nonprofit organization dedicated to the support of families and patients with HME and to advocating HME public awareness and biomedical research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Pacifici.

Ethics declarations

Conflict of Interest

M. Pacifici declares that he is part of a patent application on heparanase as a putative therapeutic target in HME.

Human and Animal Rights and Informed Consent

All studies involving laboratory animals or human subjects were performed after approval by the appropriate institutional review boards. When required, written informed consent was obtained from all participants.

Additional information

This article is part of the Topical Collection on Rare Bone Diseases

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pacifici, M. Hereditary Multiple Exostoses: New Insights into Pathogenesis, Clinical Complications, and Potential Treatments. Curr Osteoporos Rep 15, 142–152 (2017). https://doi.org/10.1007/s11914-017-0355-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-017-0355-2

Keywords

Navigation