Skip to main content

Advertisement

Log in

Maternal Preeclampsia and Risk for Cardiovascular Disease in Offspring

  • Preeclampsia (VD Garovic, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Hypertensive disease of pregnancy (HDP) has been associated with elevated lifetime cardiovascular risk, including stroke, myocardial disease, coronary artery disease, and peripheral arterial disease. These two entities share common risk factors such as obesity, insulin resistance, diabetes, and hypertension. This article will evaluate the current literature on the maternal and fetal cardiovascular risks posed by HDP. The landmark study by Barker et al. demonstrated increased cardiovascular risk in growth-restricted infants, which may also be associated with HDP. Research has demonstrated the effects that HDP may have on the vascular and nephron development in offspring, particularly with respect to endothelial and inflammatory markers. In order to control for confounding variables and better understand the relationship between HDP and lifetime cardiovascular risk, future research will require following blood pressure and metabolic profiles of the parturients and their offspring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. CDC health disparities and inequalities report. United States, 2013, in MMWR Centers for Disease Control and Prevention: Atlanta, GA. 2013. p. 144–8.

  2. Go AS et al. Heart disease and stroke statistics–2014 update: a report from the American Heart Association. Circulation. 2014;129(3):e28–292.

    Article  PubMed  Google Scholar 

  3. Murphy SL, Xu J, Kochanek KD. Deaths: final data for 2010. National Vital Statistics Reports; 2014. p. 61.

  4. Barker DJ. In utero programming of cardiovascular disease. Theriogenology. 2000;53(2):555–74.

    Article  CAS  PubMed  Google Scholar 

  5. Hauth JC et al. Pregnancy outcomes in healthy nulliparas who developed hypertension. Calcium for Preeclampsia Prevention Study Group. Obstet Gynecol. 2000;95(1):24–8.

    Article  CAS  PubMed  Google Scholar 

  6. Garovic VD, Hayman SR. Hypertension in pregnancy: an emerging risk factor for cardiovascular disease. Nat Clin Pract Nephrol. 2007;3(11):613–22.

    Article  PubMed  Google Scholar 

  7. Villar J et al. Preeclampsia, gestational hypertension and intrauterine growth restriction, related or independent conditions? Am J Obstet Gynecol. 2006;194(4):921–31.

    Article  PubMed  Google Scholar 

  8. Kvehaugen AS, Andersen LF, Staff AC. Anthropometry and cardiovascular risk factors in women and offspring after pregnancies complicated by preeclampsia or diabetes mellitus. Acta Obstet Gynecol Scand. 2010;89(11):1478–85.

    Article  PubMed  Google Scholar 

  9. Lykke JA et al. Hypertensive pregnancy disorders and subsequent cardiovascular morbidity and type 2 diabetes mellitus in the mother. Hypertension. 2009;53(6):944–51.

    Article  CAS  PubMed  Google Scholar 

  10. Ferreira I, Peeters LL, Stehouwer CD. Preeclampsia and increased blood pressure in the offspring: meta-analysis and critical review of the evidence. J Hypertens. 2009;27(10):1955–9.

    Article  CAS  PubMed  Google Scholar 

  11. Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists’ Task Force on Hypertension in Pregnancy. Obstet Gynecol. 2013;122(5):1122–31. Revised ACOG hypertension in pregnancy definitions and management guidelines.

  12. Stuart JJ et al. Maternal recall of hypertensive disorders in pregnancy: a systematic review. J Womens Health (Larchmt). 2013;22(1):37–47.

    Article  Google Scholar 

  13. Block-Abraham DM et al. First-trimester risk factors for preeclampsia development in women initiating aspirin by 16 weeks of gestation. Obstet Gynecol. 2014;123(3):611–7.

    Article  CAS  PubMed  Google Scholar 

  14. Bushnell C, et al. Guidelines for the prevention of stroke in women: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2014;45:1545–88.

  15. Jeyabalan A. Epidemiology of preeclampsia: impact of obesity. Nutr Rev. 2013;71 Suppl 1:S18–25.

    Article  PubMed  Google Scholar 

  16. Cohen AL et al. The association of circulating angiogenic factors and HbA1c with the risk of preeclampsia in women with preexisting diabetes. Hypertens Pregnancy. 2014;33(1):81–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Hannaford P, Ferry S, Hirsch S. Cardiovascular sequelae of toxaemia of pregnancy. Heart. 1997;77(2):154–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Magnussen EB et al. Hypertensive disorders in pregnancy and subsequently measured cardiovascular risk factors. Obstet Gynecol. 2009;114(5):961–70.

    Article  PubMed  Google Scholar 

  19. Marin R et al. Long-term prognosis of hypertension in pregnancy. Hypertens Pregnancy. 2000;19(2):199–209.

    Article  CAS  PubMed  Google Scholar 

  20. Wilson BJ et al. Hypertensive diseases of pregnancy and risk of hypertension and stroke in later life: results from cohort study. BMJ. 2003;326(7394):845.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Sibai BM et al. Risk factors associated with preeclampsia in healthy nulliparous women. The Calcium for Preeclampsia Prevention (CPEP) Study Group. Am J Obstet Gynecol. 1997;177(5):1003–10.

    Article  CAS  PubMed  Google Scholar 

  22. Dunne F et al. Pregnancy in women with type 2 diabetes: 12 years outcome data 1990-2002. Diabet Med. 2003;20(9):734–8.

    Article  CAS  PubMed  Google Scholar 

  23. Hubel CA et al. Fasting serum triglycerides, free fatty acids, and malondialdehyde are increased in preeclampsia, are positively correlated, and decrease within 48 hours post partum. Am J Obstet Gynecol. 1996;174(3):975–82.

    Article  CAS  PubMed  Google Scholar 

  24. Al MD et al. The essential fatty acid status of mother and child in pregnancy-induced hypertension: a prospective longitudinal study. Am J Obstet Gynecol. 1995;172(5):1605–14.

    Article  CAS  PubMed  Google Scholar 

  25. Girouard J et al. Previous hypertensive disease of pregnancy is associated with alterations of markers of insulin resistance. Hypertension. 2007;49(5):1056–62.

    Article  CAS  PubMed  Google Scholar 

  26. Callaway LK et al. Diabetes mellitus in the 21 years after a pregnancy that was complicated by hypertension: findings from a prospective cohort study. Am J Obstet Gynecol. 2007;197(5):492.e1–7.

    Article  Google Scholar 

  27. Carr DB et al. Preeclampsia and risk of developing subsequent diabetes. Hypertens Pregnancy. 2009;28(4):435–47.

    Article  CAS  PubMed  Google Scholar 

  28. Libby G et al. Pre-eclampsia and the later development of type 2 diabetes in mothers and their children: an intergenerational study from the Walker cohort. Diabetologia. 2007;50(3):523–30.

    Article  CAS  PubMed  Google Scholar 

  29. Valdiviezo C, Garovic VD, Ouyang P. Preeclampsia and hypertensive disease in pregnancy: their contributions to cardiovascular risk. Clin Cardiol. 2012;35(3):160–5. Review article evaluated the maternal cardiovascular risks in patients who had hypertensive disorder in pregnancy.

    Article  PubMed  Google Scholar 

  30. Bellamy L et al. Pre-eclampsia and risk of cardiovascular disease and cancer in later life: systematic review and meta-analysis. BMJ. 2007;335(7627):974.

    Article  PubMed Central  PubMed  Google Scholar 

  31. McDonald SD et al. Cardiovascular sequelae of preeclampsia/eclampsia: a systematic review and meta-analyses. Am Heart J. 2008;156(5):918–30.

    Article  PubMed  Google Scholar 

  32. Agatisa PK et al. Impairment of endothelial function in women with a history of preeclampsia: an indicator of cardiovascular risk. Am J Physiol Heart Circ Physiol. 2004;286(4):H1389–93.

    Article  CAS  PubMed  Google Scholar 

  33. Lampinen KH et al. Impaired vascular dilatation in women with a history of pre-eclampsia. J Hypertens. 2006;24(4):751–6.

    Article  CAS  PubMed  Google Scholar 

  34. Ramsay JE et al. Microvascular dysfunction: a link between pre-eclampsia and maternal coronary heart disease. BJOG. 2003;110(11):1029–31.

    Article  PubMed  Google Scholar 

  35. Jayet PY et al. Pulmonary and systemic vascular dysfunction in young offspring of mothers with preeclampsia. Circulation. 2010;122(5):488–94.

    Article  PubMed  Google Scholar 

  36. Sandvik MK et al. Preeclampsia in healthy women and endothelial dysfunction 10 years later. Am J Obstet Gynecol. 2013;209(6):569.e1–569.e10. Prospective study that evaluated flow-mediated brachial artery dilation and intima-media thickness of the carotid artery along with circulating markers of endothelial function. Found that endothelial function was altered in patients with preeclampsia compared to control cohort.

    Article  Google Scholar 

  37. Staff AC, Dechend R, Redman CW. Review: Preeclampsia, acute atherosis of the spiral arteries and future cardiovascular disease: two new hypotheses. Placenta. 2013;34(Suppl):S73–8. Review article that evaluated increased risk for atherosclerosis and later chronic arterial disease in patients with preeclampsia.

    Article  PubMed  Google Scholar 

  38. ACOG Practice Bulletin No. 134: fetal growth restriction. Obstet Gynecol. 2013;121(5):1122–33.

  39. Barker DJ, Osmond C. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet. 1986;1(8489):1077–81.

    Article  CAS  PubMed  Google Scholar 

  40. Conde-Agudelo A et al. Novel biomarkers for predicting intrauterine growth restriction: a systematic review and meta-analysis. BJOG. 2013;120(6):681–94.

    Article  CAS  PubMed  Google Scholar 

  41. Davis EF et al. Cardiovascular risk factors in children and young adults born to preeclamptic pregnancies: a systematic review. Pediatrics. 2012;129(6):e1552–61.

    Article  PubMed  Google Scholar 

  42. Gaillard R et al. Placental vascular dysfunction, fetal and childhood growth, and cardiovascular development: the generation R study. Circulation. 2013;128(20):2202–10.

    Article  PubMed  Google Scholar 

  43. Gebb J, Dar P. Colour Doppler ultrasound of spiral artery blood flow in the prediction of pre-eclampsia and intrauterine growth restriction. Best Pract Res Clin Obstet Gynaecol. 2011;25(3):355–66.

    Article  PubMed  Google Scholar 

  44. Mu M et al. Birth weight and subsequent blood pressure: a meta-analysis. Arch Cardiovasc Dis. 2012;105(2):99–113.

    Article  PubMed  Google Scholar 

  45. Ojeda NB, Grigore D, Alexander BT. Developmental programming of hypertension: insight from animal models of nutritional manipulation. Hypertension. 2008;52(1):44–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Spence D et al. Intra-uterine growth restriction and increased risk of hypertension in adult life: a follow-up study of 50-year-olds. Public Health. 2012;126(7):561–5.

    Article  CAS  PubMed  Google Scholar 

  47. Poston L, Hanson M. Developmental origins of health and disease. In: Creasy RR, Greene MF, Iams JD, Lockwood CJ, Moore TR, editors. Creasy and Resnik's maternal-fetal medicine : principles and practice. Philadelphia: Elsevier/Saunders; 2014. p. 139–45.

    Google Scholar 

  48. Barker DJP. Fetal origins of adult disease. In: Polin WWFRA, Abman S, editors. Fetal and neonatal physiology. Philadelphia: W.B. Saunders; 2004. p. 160–5.

    Chapter  Google Scholar 

  49. Barker DJ. Outcome of low birthweight. Horm Res. 1994;42(4–5):223–30.

    Article  CAS  PubMed  Google Scholar 

  50. Barker DJ. Fetal origins of coronary heart disease. BMJ. 1995;311(6998):171–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Szostak-Wegierek D, Szamotulska K. Fetal development and risk of cardiovascular diseases and diabetes type 2 in adult life. Med Wieku Rozwoj. 2011;15(3):203–15.

    PubMed  Google Scholar 

  52. Ryckman KK et al. Pregnancy complications and the risk of metabolic syndrome for the offspring. Curr Cardiovasc Risk Rep. 2013;7(3):217–23.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Anderson CM et al. Placental insufficiency leads to developmental hypertension and mesenteric artery dysfunction in two generations of Sprague-Dawley rat offspring. Biol Reprod. 2006;74(3):538–44.

    Article  CAS  PubMed  Google Scholar 

  54. Ness RB, Catov J. Invited commentary: timing and types of cardiovascular risk factors in relation to offspring birth weight. Am J Epidemiol. 2007;166(12):1365–7.

    Article  PubMed  Google Scholar 

  55. Nenov VD et al. Multi-hit nature of chronic renal disease. Curr Opin Nephrol Hypertens. 2000;9(2):85–97.

    Article  CAS  PubMed  Google Scholar 

  56. Contag SA et al. Developmental effect of antenatal exposure to betamethasone on renal angiotensin II activity in the young adult sheep. Am J Physiol Renal Physiol. 2010;298(4):F847–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Goddard KA et al. Candidate-gene association study of mothers with pre-eclampsia, and their infants, analyzing 775 SNPs in 190 genes. Hum Hered. 2007;63(1):1–16.

    Article  CAS  PubMed  Google Scholar 

  58. Millis RM. Epigenetics and hypertension. Curr Hypertens Rep. 2011;13(1):21–8. Review article that evaluates the evidence for epigenetic contributions to hypertension and complex environment and gene interactions that may explain the wide diversity of health and disease.

    Article  CAS  PubMed  Google Scholar 

  59. Anderson CM, et al. DNA methylation as a biomarker for preeclampsia. Biol Res Nurs. 2013. doi:10.1177/1099800413508645. Prospective study, one of the first to identify maternal epigenetic targets in fetal-derived tissue representing biomarkers for early detection and heritable risk of preeclampsia.

  60. Koleganova N, Piecha G, Ritz E. Prenatal causes of kidney disease. Blood Purif. 2009;27(1):48–52.

    Article  CAS  PubMed  Google Scholar 

  61. Boyd HA et al. Associations of personal and family preeclampsia history with the risk of early-, intermediate- and late-onset preeclampsia. Am J Epidemiol. 2013;178(11):1611–9. Large Denmark study that showed strong familial associations for early- and intermediate-onset of preeclampsia in female relatives with strongest association in early-onset preeclampsia.

    Article  PubMed  Google Scholar 

  62. Arngrimsson R et al. Genetic and familial predisposition to eclampsia and pre-eclampsia in a defined population. Br J Obstet Gynaecol. 1990;97(9):762–9.

    Article  CAS  PubMed  Google Scholar 

  63. Myklestad K et al. Hypertensive disorders in pregnancy and paternal cardiovascular risk: a population-based study. Ann Epidemiol. 2011;21(6):407–12.

    Article  PubMed  Google Scholar 

  64. Lazdam M et al. Unique blood pressure characteristics in mother and offspring after early onset preeclampsia. Hypertension. 2012;60(5):1338–45.

    Article  CAS  PubMed  Google Scholar 

  65. Resnik R, Creasy R. Intrauterine growth restriction. In: Creasy R, Greene MF, Iams JD, Lockwood CJ, Moore TR, editors. Creasy & Resnik’s maternal-fetal medicine: principles and practice. Philadelphia: Elsiever Saunders; 2014. p. 743–55.

    Google Scholar 

  66. Ahmad AS, Samuelsen SO. Hypertensive disorders in pregnancy and fetal death at different gestational lengths: a population study of 2 121 371 pregnancies. BJOG. 2012;119(12):1521–8.

    Article  CAS  PubMed  Google Scholar 

  67. Zetterstrom K et al. The association of maternal chronic hypertension with perinatal death in male and female offspring: a record linkage study of 866,188 women. BJOG. 2008;115(11):1436–42.

    Article  CAS  PubMed  Google Scholar 

  68. Mamun AA et al. Does hypertensive disorder of pregnancy predict offspring blood pressure at 21 years? Evidence from a birth cohort study. J Hum Hypertens. 2012;26(5):288–94. Large cohort study that found that maternal hypertensive disorder of pregnancy predicts adult offspring blood pressure.

    Article  CAS  PubMed  Google Scholar 

  69. Funai EF et al. Long-term mortality after preeclampsia. Epidemiology. 2005;16(2):206–15.

    Article  PubMed  Google Scholar 

  70. Irgens HU et al. Long term mortality of mothers and fathers after pre-eclampsia: population based cohort study. BMJ. 2001;323(7323):1213–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Oglaend B et al. Blood pressure in early adolescence in the offspring of preeclamptic and normotensive pregnancies. J Hypertens. 2009;27(10):2051–4.

    Article  CAS  PubMed  Google Scholar 

  72. Smith GD et al. Birth dimensions of offspring, premature birth, and the mortality of mothers. Lancet. 2000;356(9247):2066–7.

    Article  CAS  PubMed  Google Scholar 

  73. Catov JM et al. Association between infant birth weight and maternal cardiovascular risk factors in the health, aging, and body composition study. Ann Epidemiol. 2007;17(1):36–43.

    Article  PubMed  Google Scholar 

  74. Romundstad PR et al. Associations of prepregnancy cardiovascular risk factors with the offspring's birth weight. Am J Epidemiol. 2007;166(12):1359–64.

    Article  PubMed  Google Scholar 

  75. Langford HG, Watson RL. Prepregnant blood pressure, hypertension during pregnancy, and later blood pressure of mothers and offspring. Hypertension. 1980;2(4 Pt 2):130–3.

    Article  CAS  PubMed  Google Scholar 

  76. Zetterstrom K et al. Chronic hypertension as a risk factor for offspring to be born small for gestational age. Acta Obstet Gynecol Scand. 2006;85(9):1046–50.

    Article  PubMed  Google Scholar 

  77. Bujold E et al. Prevention of preeclampsia and intrauterine growth restriction with aspirin started in early pregnancy: a meta-analysis. Obstet Gynecol. 2010;116(2 Pt 1):402–14.

    Article  PubMed  Google Scholar 

  78. Geyl C, et al. Links between preeclampsia and intrauterine growth restriction. Gynecol Obstet Fertil. 2014;42(4):229–33.

  79. Weiler J, Tong S, Palmer KR. Is fetal growth restriction associated with a more severe maternal phenotype in the setting of early onset pre-eclampsia? A retrospective study. PLoS One. 2011;6(10):e26937.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Burton GJ, Charnock-Jones DS, Jauniaux E. Regulation of vascular growth and function in the human placenta. Reproduction. 2009;138(6):895–902. Placental deficient conversion of the maternal spiral arteries is associated with the majority of pregnancy complications including preeclampsia. This effect increases the risk of spontaneous vasoconstriction of the arteries, and predisposes the placenta to ischemia reperfusion-type injury.

    Article  CAS  PubMed  Google Scholar 

  81. Markham KB, FE. Pregnancy related hypertension. In: Creasy R, Greene MF, Iams JD, Lockwood CJ, Moore TR, editors. Creasy and Resnik's maternal-fetal medicine: principles and practice. Elsiever Saunders: Philadelphia; 2014. p. 756–81.

  82. Brosens IA, Robertson WB, Dixon HG. The role of the spiral arteries in the pathogenesis of preeclampsia. Obstet Gynecol Annu. 1972;1:177–91.

    CAS  PubMed  Google Scholar 

  83. Odegard RA et al. Preeclampsia and fetal growth. Obstet Gynecol. 2000;96(6):950–5.

    Article  CAS  PubMed  Google Scholar 

  84. Kajantie E et al. Pre-eclampsia is associated with increased risk of stroke in the adult offspring: the Helsinki birth cohort study. Stroke. 2009;40(4):1176–80.

    Article  PubMed  Google Scholar 

  85. Miettola S et al. Offspring's blood pressure and metabolic phenotype after exposure to gestational hypertension in utero. Eur J Epidemiol. 2013;28(1):87–98.

    Article  CAS  PubMed  Google Scholar 

  86. Fugelseth D et al. Myocardial function in offspring 5-8 years after pregnancy complicated by preeclampsia. Early Hum Dev. 2011;87(8):531–5.

    Article  PubMed  Google Scholar 

  87. Wu CS et al. Diseases in children born to mothers with preeclampsia: a population-based sibling cohort study. Am J Obstet Gynecol. 2011;204(2):157.e1–5.

    Article  Google Scholar 

  88. Lawlor DA et al. Cardiovascular biomarkers and vascular function during childhood in the offspring of mothers with hypertensive disorders of pregnancy: findings from the Avon Longitudinal Study of Parents and Children. Eur Heart J. 2012;33(3):335–45.

    Article  PubMed Central  PubMed  Google Scholar 

  89. Kvehaugen AS et al. Endothelial function and circulating biomarkers are disturbed in women and children after preeclampsia. Hypertension. 2011;58(1):63–9.

    Article  CAS  PubMed  Google Scholar 

  90. Whitehouse AJ et al. Do hypertensive diseases of pregnancy disrupt neurocognitive development in offspring? Paediatr Perinat Epidemiol. 2012;26(2):101–8.

    Article  PubMed  Google Scholar 

  91. Tuovinen S et al. Hypertensive disorders in pregnancy and risk of severe mental disorders in the offspring in adulthood: the Helsinki Birth Cohort Study. J Psychiatr Res. 2012;46(3):303–10.

    Article  PubMed  Google Scholar 

  92. Robinson M et al. Hypertensive diseases of pregnancy and the development of behavioral problems in childhood and adolescence: the Western Australian Pregnancy Cohort Study. J Pediatr. 2009;154(2):218–24.

    Article  PubMed  Google Scholar 

  93. Palti H, Rothschild E. Blood pressure and growth at 6 years of age among offsprings of mothers with hypertension of pregnancy. Early Hum Dev. 1989;19(4):263–9.

    Article  CAS  PubMed  Google Scholar 

  94. Vatten LJ et al. Intrauterine exposure to preeclampsia and adolescent blood pressure, body size, and age at menarche in female offspring. Obstet Gynecol. 2003;101(3):529–33.

    Article  PubMed  Google Scholar 

  95. Seidman DS et al. Pre-eclampsia and offspring's blood pressure, cognitive ability and physical development at 17-years-of-age. Br J Obstet Gynaecol. 1991;98(10):1009–14.

    Article  CAS  PubMed  Google Scholar 

  96. Tenhola S et al. Blood pressure, serum lipids, fasting insulin, and adrenal hormones in 12-year-old children born with maternal preeclampsia. J Clin Endocrinol Metab. 2003;88(3):1217–22.

    Article  CAS  PubMed  Google Scholar 

  97. Ophir E et al. Newborns of pre-eclamptic women: a biochemical difference present in utero. Acta Obstet Gynecol Scand. 2006;85(10):1172–8.

    Article  PubMed  Google Scholar 

  98. Palmsten K, Buka SL, Michels KB. Maternal pregnancy-related hypertension and risk for hypertension in offspring later in life. Obstet Gynecol. 2010;116(4):858–64.

    Article  PubMed Central  PubMed  Google Scholar 

  99. Geelhoed JJ et al. Preeclampsia and gestational hypertension are associated with childhood blood pressure independently of family adiposity measures: the Avon Longitudinal Study of Parents and Children. Circulation. 2010;122(12):1192–9. One of the largest prospective cohort studies to evaluate the association between hypertensive disorders of pregnancy blood pressure of offspring.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Guadalupe Herrera-Garcia and Stephen Contag each declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors except for reference 56, on which Dr. Contag is coauthor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Contag.

Additional information

This article is part of the Topical Collection on Preeclampsia

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herrera-Garcia, G., Contag, S. Maternal Preeclampsia and Risk for Cardiovascular Disease in Offspring. Curr Hypertens Rep 16, 475 (2014). https://doi.org/10.1007/s11906-014-0475-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-014-0475-3

Keywords

Navigation