Skip to main content

Advertisement

Log in

Richter Transformation of Chronic Lymphocytic Leukemia—Are We Making Progress?

  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract   

Purpose of Review

The treatment paradigm of chronic lymphocytic leukemia (CLL) has dramatically changed with the advent of novel targeted agents over the past decade. Richter transformation (RT), or the development of an aggressive lymphoma from a background of CLL, is a well-recognized complication of CLL and carries significantly poor clinical outcomes. Here, we provide an update on current diagnostics, prognostication, and contemporary treatment of RT.

Recent Findings

Several genetic, biologic, and laboratory markers have been proposed as candidate risk factors for the development of RT. Although a diagnosis of RT is typically suspected based on clinical and laboratory findings, tissue biopsy is essential for histopathologic confirmation of diagnosis. The standard of care for RT treatment at this time remains chemoimmunotherapy with the goal of proceeding to allogeneic stem cell transplantation in eligible patients. Several newer treatment modalities are being studied for use in the management of RT, including small molecules, immunotherapy, bispecific antibodies, and chimeric antigen receptor T-cell (CAR-T) therapy.

Summary

The management of patients with RT remains a challenge. Ongoing trials show enormous promise for newer classes of therapy in RT, with the hope being that these agents can synergize, and perhaps supersede, the current standard of care in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Requests regarding data availability not already shared in the supplemental material should be made to the corresponding author.

References  

  1. Richter MN. Generalized reticular cell sarcoma of lymph nodes associated with lymphatic leukemia. Am J Pathol. 1928;4(4):285-292.7.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Lortholary P, et al. Chronic lymphoid leukemia secondarily associated with a malignant reticulopathy: Richter’s Syndrome. Nouv Rev Fr Hematol. 1964;4:621–44.

    CAS  PubMed  Google Scholar 

  3. Alaggio R, et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. Leukemia. 2022;36(7):1720–48.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Swerdlow SH, et al. The 2016 revision of the World Health Organization Classification of Lymphoid Neoplasms. Blood. 2016;127(20):2375–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Campo E, et al. The International Consensus Classification of Mature Lymphoid Neoplasms: a report from the Clinical Advisory Committee. Blood. 2022;140(11):1229–53.

    Article  CAS  PubMed  Google Scholar 

  6. Bockorny B, Codreanu I, Dasanu CA. Hodgkin lymphoma as Richter transformation in chronic lymphocytic leukaemia: a retrospective analysis of world literature. Br J Haematol. 2012;156(1):50–66.

    Article  PubMed  Google Scholar 

  7. Shao H, et al. Clonally related histiocytic/dendritic cell sarcoma and chronic lymphocytic leukemia/small lymphocytic lymphoma: a study of seven cases. Mod Pathol. 2011;24(11):1421–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chakhachiro Z, et al. B-Lymphoblastic leukemia in patients with chronic lymphocytic leukemia: a report of four cases. Am J Clin Pathol. 2015;144(2):333–40.

    Article  CAS  PubMed  Google Scholar 

  9. Parikh SA, et al. Diffuse large B-cell lymphoma (Richter syndrome) in patients with chronic lymphocytic leukaemia (CLL): a cohort study of newly diagnosed patients. Br J Haematol. 2013;162(6):774–82.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Parikh SA, Shanafelt TD. Risk factors for Richter syndrome in chronic lymphocytic leukemia. Curr Hematol Malig Rep. 2014;9(3):294–9.

    Article  PubMed  Google Scholar 

  11. Al-Sawaf O, et al. Richter transformation in chronic lymphocytic leukemia (CLL)–a pooled analysis of German CLL Study Group (GCLLSG) front line treatment trials. Leukemia. 2021;35(1):169–76.

    Article  CAS  PubMed  Google Scholar 

  12. Tadmor T, Levy I. Richter transformation in chronic lymphocytic leukemia: update in the era of novel agents. Cancers. 2021;13(20):5141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Petrackova A, et al. Revisiting Richter transformation in the era of novel CLL agents. Blood Rev. 2021;49:100824.

    Article  CAS  PubMed  Google Scholar 

  14. Ibrutinib for relapsed/refractory chronic lymphocytic leukemia. a UK and Ireland analysis of outcomes in 315 patients. Haematologica. 2016;101(12):1563–72.

    Article  Google Scholar 

  15. Fraser G, et al. Updated results from the phase 3 HELIOS study of ibrutinib, bendamustine, and rituximab in relapsed chronic lymphocytic leukemia/small lymphocytic lymphoma. Leukemia. 2019;33(4):969–80.

    Article  CAS  PubMed  Google Scholar 

  16. Roberts AW, et al. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. N Engl J Med. 2016;374(4):311–22.

    Article  CAS  PubMed  Google Scholar 

  17. Woyach JA, et al. Ibrutinib regimens versus chemoimmunotherapy in older patients with untreated CLL. N Engl J Med. 2018;379(26):2517–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ahn IE, et al. Clonal evolution leading to ibrutinib resistance in chronic lymphocytic leukemia. Blood. 2017;129(11):1469–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sharman JP, et al. Acalabrutinib with or without obinutuzumab versus chlorambucil and obinutuzmab for treatment-naive chronic lymphocytic leukaemia (ELEVATE TN): a randomised, controlled, phase 3 trial. Lancet. 2020;395(10232):1278–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rossi D, et al. Stereotyped B-cell receptor is an independent risk factor of chronic lymphocytic leukemia transformation to Richter syndrome. Clin Cancer Res. 2009;15(13):4415–22.

    Article  CAS  PubMed  Google Scholar 

  21. Zenz T, et al. TP53 mutation and survival in chronic lymphocytic leukemia. J Clin Oncol. 2010;28(29):4473–9.

    Article  PubMed  Google Scholar 

  22. Gonzalez D, et al. Mutational status of the TP53 gene as a predictor of response and survival in patients with chronic lymphocytic leukemia: results from the LRF CLL4 trial. J Clin Oncol. 2011;29(16):2223–9.

    Article  PubMed  Google Scholar 

  23. Rossi D, et al. Different impact of NOTCH1 and SF3B1 mutations on the risk of chronic lymphocytic leukemia transformation to Richter syndrome. Br J Haematol. 2012;158(3):426–9.

    Article  CAS  PubMed  Google Scholar 

  24. Chigrinova E, et al. Two main genetic pathways lead to the transformation of chronic lymphocytic leukemia to Richter syndrome. Blood. 2013;122(15):2673–82.

    Article  CAS  PubMed  Google Scholar 

  25. De Paoli L, et al. MGA, a suppressor of MYC, is recurrently inactivated in high risk chronic lymphocytic leukemia. Leuk Lymphoma. 2013;54(5):1087–90.

    Article  PubMed  Google Scholar 

  26. Klintman J, et al. Genomic and transcriptomic correlates of Richter transformation in chronic lymphocytic leukemia. Blood. 2021;137(20):2800–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Erin Michelle Parry, R.G., Ignaty Leshchiner, Daniel Rosebrock, Bria Persaud, Camilla K Lemvigh, Eugen Tausch, Matthew S. Davids, Johannes Bloehdorn, Christof Schneider, Liudmila Elagina, Aina Zurita Martinez, Amaro Taylor-Weiner, Nitin Jain, William G. Wierda, Laura Z. Rassenti, Thomas J. Kipps, Julien Broséus, Florence Cymbalista, Neil E. Kay, Kenneth J. Livak, Shuqiang Li, Teddy Huang, Noelia Purroy, Annabelle J Anandappa, Stacey M. Fernandes, Filippo Utro, Kahn Rhrissorrakrai, Chaya Levovitz, Brian P Danysh, Kara Slowik, Sameer A. Parikh, Jennifer R Brown, Laxmi Parida, Donna S. Neuberg, Stephan Stilgenbauer, Gad Getz, Catherine J. Wu, Genetic determinants and evolutionary history of Richter’s syndrome, in American Society of Hematology Annual Meeting and Exposition. 2020: Virtual.

  28. Parry EM, et al. Evolutionary history of transformation from chronic lymphocytic leukemia to Richter syndrome. Nat Med. 2023;29(1):158–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Broséus J, et al. Molecular characterization of Richter syndrome identifies de novo diffuse large B-cell lymphomas with poor prognosis. Nat Commun. 2023;14(1):309.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Parry, E.M., E. Ten Hacken, and C.J. Wu, Richter syndrome: novel insights into the biology of transformation. Blood, 2023.

  31. Wang Y, Ding W. Richter transformation of chronic lymphocytic leukemia in the era of novel agents. Clin Adv Hematol Oncol. 2020;18(6):348–57.

    PubMed  Google Scholar 

  32. Davids MS, et al. Phase I first-in-human study of venetoclax in patients with relapsed or refractory non-Hodgkin lymphoma. J Clin Oncol. 2017;35(8):826–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Visentin A, et al. The complex karyotype landscape in chronic lymphocytic leukemia allows the refinement of the risk of Richter syndrome transformation. Haematologica. 2022;107(4):868–76.

    Article  PubMed  Google Scholar 

  34. Miller CR, et al. Near-tetraploidy is associated with Richter transformation in chronic lymphocytic leukemia patients receiving ibrutinib. Blood Adv. 2017;1(19):1584–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kadri S, et al. Clonal evolution underlying leukemia progression and Richter transformation in patients with ibrutinib-relapsed CLL. Blood Adv. 2017;1(12):715–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Maddocks KJ, et al. Etiology of ibrutinib therapy discontinuation and outcomes in patients with chronic lymphocytic leukemia. JAMA Oncol. 2015;1(1):80–7.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Jain P, et al. Outcomes of patients with chronic lymphocytic leukemia after discontinuing ibrutinib. Blood. 2015;125(13):2062–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kanagal-Shamanna R, et al. Targeted multigene deep sequencing of Bruton tyrosine kinase inhibitor-resistant chronic lymphocytic leukemia with disease progression and Richter transformation. Cancer. 2019;125(4):559–74.

    Article  CAS  PubMed  Google Scholar 

  39. Burger JA, et al. Clonal evolution in patients with chronic lymphocytic leukaemia developing resistance to BTK inhibition. Nat Commun. 2016;7:11589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nadeu F, et al. Detection of early seeding of Richter transformation in chronic lymphocytic leukemia. Nat Med. 2022;28(8):1662–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Omoti CE, Omoti AE. Richter syndrome: a review of clinical, ocular, neurological and other manifestations. Br J Haematol. 2008;142(5):709–16.

    Article  PubMed  Google Scholar 

  42. Tsimberidou AM, et al. Clinical outcomes and prognostic factors in patients with Richter’s syndrome treated with chemotherapy or chemoimmunotherapy with or without stem-cell transplantation. J Clin Oncol. 2006;24(15):2343–51.

    Article  CAS  PubMed  Google Scholar 

  43. Watanabe N, et al. Richter’s syndrome with hypercalcemia induced by tumor-associated production of parathyroid hormone-related peptide. Case Rep Oncol. 2017;10(1):123–6.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bowen DA, et al. Infectious lymphadenitis in patients with chronic lymphocytic leukemia/small lymphocytic lymphoma: a rare, but important, complication. Leuk Lymphoma. 2015;56(2):311–4.

    Article  CAS  PubMed  Google Scholar 

  45. Pemmaraju N, et al. PET-positive lymphadenopathy in CLL–not always Richter transformation. Am J Hematol. 2017;92(4):405–6.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Cherng HJ, et al. Metastatic lung adenocarcinoma mimicking Richter transformation in a patient with chronic lymphocytic leukemia. Leuk Res. 2020;98:106445.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Jain P, Burger JA, Khoury JD. CLL progression after one cycle of FCR: Richter’s transformation versus EBV-associated lympho-proliferation. Am J Hematol. 2017;92(10):1113–4.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Falchi L, et al. Correlation between FDG/PET, histology, characteristics, and survival in 332 patients with chronic lymphoid leukemia. Blood. 2014;123(18):2783–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Michallet AS, et al. An 18F-FDG-PET maximum standardized uptake value > 10 represents a novel valid marker for discerning Richter’s syndrome. Leuk Lymphoma. 2016;57(6):1474–7.

    Article  PubMed  Google Scholar 

  50. Mato AR, Wierda W, Davids MS, et al. Analysis of PET-CT to identify Richter’s transformation in 167 patients with disease progression following kinase inhibitor therapy. Blood. 2017;130(51):834.

    Article  Google Scholar 

  51. Anderson MA, et al. Clinicopathological features and outcomes of progression of CLL on the BCL2 inhibitor venetoclax. Blood. 2017;129(25):3362–70.

    Article  CAS  PubMed  Google Scholar 

  52. Yucai W, et al. The role of 18F-FDG-PET in detecting Richter’s transformation of chronic lymphocytic leukemia in patients receiving therapy with a B-cell receptor inhibitor. Haematologica. 2020;105(11):2675–8.

    Article  Google Scholar 

  53. Soilleux EJ, et al. Diagnostic dilemmas of high-grade transformation (Richter’s syndrome) of chronic lymphocytic leukaemia: results of the phase II National Cancer Research Institute CHOP-OR clinical trial specialist haemato-pathology central review. Histopathology. 2016;69(6):1066–76.

    Article  PubMed  Google Scholar 

  54. Sigmund AM, Kittai AS. Richter’s transformation. Curr Oncol Rep. 2022;24(8):1081–90.

    Article  PubMed  Google Scholar 

  55. Barnea Slonim L, et al. Pseudo-Richter transformation of chronic lymphocytic leukaemia/small lymphocytic lymphoma following ibrutinib interruption: a diagnostic pitfall. Br J Haematol. 2020;191(1):e22–5.

    Article  CAS  PubMed  Google Scholar 

  56. Hampel PJ, et al. Incidental Richter transformation in chronic lymphocytic leukemia patients during temporary interruption of ibrutinib. Blood Adv. 2020;4(18):4508–11.

    Article  PubMed  PubMed Central  Google Scholar 

  57. El Hussein S, et al. Artificial intelligence-assisted mapping of proliferation centers allows the distinction of accelerated phase from large cell transformation in chronic lymphocytic leukemia. Mod Pathol. 2022;35(8):1121–5.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Reinert CP, et al. Computed tomography textural analysis for the differentiation of chronic lymphocytic leukemia and diffuse large B cell lymphoma of Richter syndrome. Eur Radiol. 2019;29(12):6911–21.

    Article  CAS  PubMed  Google Scholar 

  59. Yucai Wang, M.K., Sameer A. Parikh, Timothy G. Call, Neil E. Kay, Patrick B. Johnston, Luis F. Porrata, Thomas M. Habermann, Thomas E. Witzig, Grzegorz S. Nowakowski, Stephen M. Ansell, Min Shi, Saad S. Kenderian, Eli Muchtar, Suzanne R. Hayman, Amber B. Koehler, Jose F. Leis, Wei Ding, Central nervous system (CNS) involvement of Richter transformation: a single center experience, in American Society of Hematology Annual Meeting and Exposition. 2020: Virtual.

  60. Rossi D, Gaidano G. Richter syndrome: pathogenesis and management. Semin Oncol. 2016;43(2):311–9.

    Article  CAS  PubMed  Google Scholar 

  61. Rossi D, et al. The genetics of Richter syndrome reveals disease heterogeneity and predicts survival after transformation. Blood. 2011;117(12):3391–401.

    Article  CAS  PubMed  Google Scholar 

  62. Eyre TA, Schuh A. An update for Richter syndrome – new directions and developments. Br J Haematol. 2017;178(4):508–20.

    Article  CAS  PubMed  Google Scholar 

  63. Wang Y, et al. Clinical characteristics and outcomes of Richter transformation: experience of 204 patients from a single center. Haematologica. 2020;105(3):765–73.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Elnair R, et al. Outcomes of Richter’s transformation of chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL): an analysis of the SEER database. Ann Hematol. 2021;100(10):2513–9.

    Article  PubMed  Google Scholar 

  65. Abrisqueta P, et al. Clinical outcome and prognostic factors of patients with Richter syndrome: real-world study of the Spanish Chronic Lymphocytic Leukemia Study Group (GELLC). Br J Haematol. 2020;190(6):854–63.

    Article  CAS  PubMed  Google Scholar 

  66. Eyre TA, et al. Richter transformation of chronic lymphocytic leukaemia: a British Society for Haematology Good Practice Paper. Br J Haematol. 2022;196(4):864–70.

    Article  PubMed  Google Scholar 

  67. Xiao W, et al. Hodgkin lymphoma variant of Richter transformation: morphology, Epstein-Barr virus status, clonality, and survival analysis-with comparison to Hodgkin-like lesion. Hum Pathol. 2016;55:108–16.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Ryan CE, Davids MS. Practical management of Richter transformation in 2023 and beyond. Am Soc Clin Oncol Educ Book. 2023;43:e390804.

    Article  PubMed  Google Scholar 

  69. He R, et al. PD-1 expression in chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) and large B-cell Richter transformation (DLBCL-RT): a characteristic feature of DLBCL-RT and potential surrogate marker for clonal relatedness. Am J Surg Pathol. 2018;42(7):843–54.

    Article  PubMed  Google Scholar 

  70. Behdad A, et al. PD-1 is highly expressed by neoplastic B-cells in Richter transformation. Br J Haematol. 2019;185(2):370–3.

    Article  PubMed  Google Scholar 

  71. Kittai AS, et al. Utilizing clinical features of progression to predict Richter’s syndrome in patients with CLL progressing after ibrutinib. Blood. 2021;138:3731.

    Article  Google Scholar 

  72. Hampel PJ, et al. Clinical outcomes in patients with chronic lymphocytic leukemia with disease progression on ibrutinib. Blood Cancer J. 2022;12(9):124.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Tadmor T, et al. Richter’s transformation to diffuse large B-cell lymphoma: a retrospective study reporting clinical data, outcome, and the benefit of adding rituximab to chemotherapy, from the Israeli CLL Study Group. Am J Hematol. 2014;89(11):E218–22.

    Article  CAS  PubMed  Google Scholar 

  74. Langerbeins P, et al. Poor efficacy and tolerability of R-CHOP in relapsed/refractory chronic lymphocytic leukemia and Richter transformation. Am J Hematol. 2014;89(12):E239–43.

    Article  CAS  PubMed  Google Scholar 

  75. Eyre TA, et al. NCRI phase II study of CHOP in combination with ofatumumab in induction and maintenance in newly diagnosed Richter syndrome. Br J Haematol. 2016;175(1):43–54.

    Article  CAS  PubMed  Google Scholar 

  76. Dabaja BS, et al. Fractionated cyclophosphamide, vincristine, liposomal daunorubicin (daunoXome), and dexamethasone (hyperCVXD) regimen in Richter’s syndrome. Leuk Lymphoma. 2001;42(3):329–37.

    Article  CAS  PubMed  Google Scholar 

  77. Durot E, et al. Platinum and high-dose cytarabine-based regimens are efficient in ultra high/high-risk chronic lymphocytic leukemia and Richter’s syndrome: results of a French retrospective multicenter study. Eur J Haematol. 2015;95(2):160–7.

    Article  CAS  PubMed  Google Scholar 

  78. Tsimberidou AM, et al. Phase I-II study of oxaliplatin, fludarabine, cytarabine, and rituximab combination therapy in patients with Richter’s syndrome or fludarabine-refractory chronic lymphocytic leukemia. J Clin Oncol. 2008;26(2):196–203.

    Article  CAS  PubMed  Google Scholar 

  79. Tsang M, et al. The efficacy of ibrutinib in the treatment of Richter syndrome. Blood. 2015;125(10):1676–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Eyre TA, et al. Acalabrutinib monotherapy for treatment of chronic lymphocytic leukaemia (ACE-CL-001): analysis of the Richter transformation cohort of an open-label, single-arm, phase 1–2 study. Lancet Haematol. 2021;8(12):e912–21.

    Article  CAS  PubMed  Google Scholar 

  81. Hillmen P, et al. Acalabrutinib monotherapy in patients with Richter transformation from the phase 1/2 ACE-CL-001 Clinical Study. Blood. 2016;128(22):60–60.

    Article  Google Scholar 

  82. Tam C, et al. Zanubrutinib, alone and in combination with tislelizumab, for the treatment of Richter transformation of chronic lymphocytic leukemia. Hemasphere. 2023;7(4):e870.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Jennifer Woyach, D.S., Ian Flinn, Seema Bhat, Ronald E. Savage, Feng Chai, Sudharshan Eathiraj, Lindsey Granlund, Lyndsey Szuszkiewicz, John Byrd, A phase 1 dose escalation study of ARQ 531 In Patients With Relapsed Or Refractory B-Cell Lymphoid Malignancies, in European Hematology Association Annual Congress. 2019.

  84. Rhodes J, et al. Abstract CT167: Efficacy of pirtobrutinib, a highly selective, non-covalent (reversible) BTK inhibitor in Richter transformation: results from the phase 1/2 BRUIN study. Cancer Research. 2023;83:CT167–CT167.

    Article  Google Scholar 

  85. Visentin A, et al. BCR kinase inhibitors, idelalisib and ibrutinib, are active and effective in Richter syndrome. Br J Haematol. 2019;185(1):193–7.

    Article  PubMed  Google Scholar 

  86. Bagacean C, et al. Rapid and complete response to idelalisib in a case of Richter syndrome. Onco Targets Ther. 2019;12:1181–4.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Iannello A, et al. Synergistic efficacy of the dual PI3K-δ/γ inhibitor duvelisib with the Bcl-2 inhibitor venetoclax in Richter syndrome PDX models. Blood. 2021;137(24):3378–89.

    Article  CAS  PubMed  Google Scholar 

  88. Bouclet F, et al. Real-world outcomes following venetoclax therapy in patients with chronic lymphocytic leukemia or Richter syndrome: a FILO study of the French compassionate use cohort. Ann Hematol. 2021;100(4):987–93.

    Article  CAS  PubMed  Google Scholar 

  89. Kuruvilla J, et al. The oral selective inhibitor of nuclear export (SINE) selinexor (KPT-330) demonstrates broad and durable clinical activity in relapsed / refractory non Hodgkin’s lymphoma (NHL). Blood. 2014;124(21):396–396.

    Article  Google Scholar 

  90. Stephens DM, et al. Selinexor combined with ibrutinib demonstrates tolerability and safety in advanced B-cell malignancies: a phase I study. Clin Cancer Res. 2022;28(15):3242–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Thompson PA, et al. A phase two study of high dose blinatumomab in Richter’s syndrome. Leukemia. 2022;36(9):2228–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Guieze R, et al. Blinatumomab for patients with Richter syndrome: final results of the phase 2 Blinart Trial from the Filo Group. Blood. 2022;140(Supplement 1):6631–2.

    Article  Google Scholar 

  93. Hutchings M, et al. Glofitamab, a novel, bivalent CD20-targeting T-cell-engaging bispecific antibody, induces durable complete remissions in relapsed or refractory B-cell lymphoma: a phase I trial. J Clin Oncol. 2021;39(18):1959–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Dickinson MJ, et al. Glofitamab for relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med. 2022;387(24):2220–31.

    Article  CAS  PubMed  Google Scholar 

  95. Budde LE, et al. Single-agent mosunetuzumab shows durable complete responses in patients with relapsed or refractory B-cell lymphomas: phase I dose-escalation study. J Clin Oncol. 2022;40(5):481–91.

    Article  CAS  PubMed  Google Scholar 

  96. Thieblemont C, et al. Epcoritamab, a Novel, Subcutaneous CD3xCD20 bispecific T-cell-engaging antibody, in relapsed or refractory large B-cell lymphoma: dose expansion in a phase I/II trial. J Clin Oncol. 2023;41(12):2238–47.

    Article  CAS  PubMed  Google Scholar 

  97. Ding W, et al. Pembrolizumab in patients with CLL and Richter transformation or with relapsed CLL. Blood. 2017;129(26):3419–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Armand P, et al. Pembrolizumab in relapsed or refractory Richter syndrome. Br J Haematol. 2020;190(2):e117–20.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Jain N, et al. A phase II trial of nivolumab combined with ibrutinib for patients with Richter transformation. Blood. 2018;132(Supplement 1):296–296.

    Article  Google Scholar 

  100. Younes A, et al. Safety and activity of ibrutinib in combination with nivolumab in patients with relapsed non-Hodgkin lymphoma or chronic lymphocytic leukaemia: a phase 1/2a study. Lancet Haematol. 2019;6(2):e67–78.

    Article  PubMed  Google Scholar 

  101. Davids MS, et al. Venetoclax plus dose-adjusted R-EPOCH for Richter syndrome. Blood. 2022;139(5):686–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Turtle CJ, et al. Durable molecular remissions in chronic lymphocytic leukemia treated with CD19-specific chimeric antigen receptor-modified T cells after failure of ibrutinib. J Clin Oncol. 2017;35(26):3010–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gauthier J, et al. Feasibility and efficacy of CD19-targeted CAR T cells with concurrent ibrutinib for CLL after ibrutinib failure. Blood. 2020;135(19):1650–60.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Benjamini O, et al. Safety and efficacy of CD19-CAR T cells in Richter’s transformation after targeted therapy for chronic lymphocytic leukemia. Blood. 2020;136(Supplement 1):40–40.

    Article  Google Scholar 

  105. Kittai AS, et al. Clinical activity of axicabtagene ciloleucel in adult patients with Richter syndrome. Blood Adv. 2020;4(19):4648–52.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Cwynarski K, et al. Autologous and allogeneic stem-cell transplantation for transformed chronic lymphocytic leukemia (Richter’s syndrome): a retrospective analysis from the chronic lymphocytic leukemia subcommittee of the chronic leukemia working party and lymphoma working party of the European Group for Blood and Marrow Transplantation. J Clin Oncol. 2012;30(18):2211–7.

    Article  PubMed  Google Scholar 

  107. Herrera AF, et al. Autologous and allogeneic hematopoietic cell transplantation for diffuse large B-cell lymphoma-type Richter syndrome. Blood Adv. 2021;5(18):3528–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Byrd JC, et al. Ibrutinib treatment for first-line and relapsed/refractory chronic lymphocytic leukemia: final analysis of the pivotal phase Ib/II PCYC-1102 study. Clinical Cancer Research. 2020;26(15):3918–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Byrd JC, et al. Acalabrutinib versus ibrutinib in previously treated chronic lymphocytic leukemia: results of the first randomized phase III trial. J Clin Oncol. 2021;39(31):3441–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Dimou M, et al. Safety and efficacy analysis of long-term follow up real-world data with ibrutinib monotherapy in 58 patients with CLL treated in a single-center in Greece. Leuk Lymphoma. 2019;60(12):2939–45.

    Article  CAS  PubMed  Google Scholar 

  111. Farooqui MZ, et al. Ibrutinib for previously untreated and relapsed or refractory chronic lymphocytic leukaemia with TP53 aberrations: a phase 2, single-arm trial. Lancet Oncol. 2015;16(2):169–76.

    Article  CAS  PubMed  Google Scholar 

  112. Huang X, et al. Ibrutinib versus rituximab in relapsed or refractory chronic lymphocytic leukemia or small lymphocytic lymphoma: a randomized, open-label phase 3 study. Cancer Med. 2018;7(4):1043–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Munir T, et al. Final analysis from RESONATE: Up to six years of follow-up on ibrutinib in patients with previously treated chronic lymphocytic leukemia or small lymphocytic lymphoma. Am J Hematol. 2019;94(12):1353–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Nuttall E, et al. Real-world experience of ibrutinib therapy in relapsed chronic lymphocytic leukemia: results of a single-center retrospective analysis. J Blood Med. 2019;10:199–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. O’Brien SM, et al. Outcomes with ibrutinib by line of therapy and post-ibrutinib discontinuation in patients with chronic lymphocytic leukemia: phase 3 analysis. Am J Hematol. 2019;94(5):554–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Winqvist M, et al. Long-term real-world results of ibrutinib therapy in patients with relapsed or refractory chronic lymphocytic leukemia: 30-month follow up of the Swedish compassionate use cohort. Haematologica. 2019;104(5):e208–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kittai AS, Huang Y, Beckwith KA, Bhat SA, Bond DA, Byrd JC, Goldstein D, Grever MR, Miller C, Rogers KA, Yano M, Woyach JA. Patient characteristics that predict Richter’s transformation in patients with chronic lymphocytic leukemia treated with ibrutinib. Am J Hematol. 2023;98(1):56–65. https://doi.org/10.1002/ajh.26755. (Epub 2022 Oct 20 PMID: 36216791).

    Article  CAS  PubMed  Google Scholar 

  118. Byrd JC, et al. Acalabrutinib in treatment-naive chronic lymphocytic leukemia. Blood. 2021;137(24):3327–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Awan FT, et al. Acalabrutinib monotherapy in patients with chronic lymphocytic leukemia who are intolerant to ibrutinib. Blood Adv. 2019;3(9):1553–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Byrd JC, et al. Acalabrutinib monotherapy in patients with relapsed/refractory chronic lymphocytic leukemia: updated phase 2 results. Blood. 2020;135(15):1204–13.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Tam CS, et al. Zanubrutinib versus bendamustine and rituximab in untreated chronic lymphocytic leukaemia and small lymphocytic lymphoma (SEQUOIA): a randomised, controlled, phase 3 trial. Lancet Oncol. 2022;23(8):1031–43.

    Article  CAS  PubMed  Google Scholar 

  122. Xu W, et al. Treatment of relapsed/refractory chronic lymphocytic leukemia/small lymphocytic lymphoma with the BTK inhibitor zanubrutinib: phase 2, single-arm, multicenter study. J Hematol Oncol. 2020;13(1):48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Lin VS, et al. BTK inhibitor therapy is effective in patients with CLL resistant to venetoclax. Blood. 2020;135(25):2266–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Eyre TA, et al. Efficacy of venetoclax monotherapy in patients with relapsed chronic lymphocytic leukaemia in the post-BCR inhibitor setting: a UK wide analysis. Br J Haematol. 2019;185(4):656–69.

    Article  CAS  PubMed  Google Scholar 

  125. Roeker LE, et al. Tumor lysis, adverse events, and dose adjustments in 297 venetoclax-treated CLL patients in routine clinical practice. Clin Cancer Res. 2019;25(14):4264–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Stilgenbauer S, et al. Venetoclax for patients with chronic lymphocytic leukemia with 17p deletion: results from the full population of a phase II pivotal trial. J Clin Oncol. 2018;36(19):1973–80.

    Article  CAS  PubMed  Google Scholar 

  127. Jones JA, et al. Venetoclax for chronic lymphocytic leukaemia progressing after ibrutinib: an interim analysis of a multicentre, open-label, phase 2 trial. Lancet Oncol. 2018;19(1):65–75.

    Article  CAS  PubMed  Google Scholar 

  128. Coutre S, et al. Venetoclax for patients with chronic lymphocytic leukemia who progressed during or after idelalisib therapy. Blood. 2018;131(15):1704–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ghia P, et al. ASCEND: phase III, randomized trial of acalabrutinib versus idelalisib plus rituximab or bendamustine plus rituximab in relapsed or refractory chronic lymphocytic leukemia. J Clin Oncol. 2020;38(25):2849–61.

    Article  CAS  PubMed  Google Scholar 

  130. Tam CS, et al. Fixed-duration ibrutinib plus venetoclax for first-line treatment of CLL: primary analysis of the CAPTIVATE FD cohort. Blood. 2022;139(22):3278–89.

    Article  CAS  PubMed  Google Scholar 

  131. Nitin Jain, M.J.K., Philip A. Thompson, Alessandra Ferrajoli, Jan A. Burger, Gautam Borthakur, Koichi Takahashi, Zeev E. Estrov, Koji Sasaki, Nathan H Fowler, Tapan M. Kadia, Marina Konopleva, Yesid Alvarado, Musa Yilmaz, Courtney D. DiNardo, Prithviraj Bose, Maro Ohanian, Naveen Pemmaraju, Elias Jabbour, Rashmi Kanagal-Shamanna, Keyur Patel, Wei Wang, Jeffrey L. Jorgensen, Sa A Wang, Naveen Garg, Xuemei Wang, Chongjuan Wei, Nichole Cruz, Ana Ayala, William Plunkett, Hagop M. Kantarjian, Varsha Gandhi, William G. Wierda, Combined ibrutinib and venetoclax for first-line treatment for patients with chronic lymphocytic leukemia (CLL): focus on MRD results, in American Society of Hematology Annual Meeting and Exposition. 2020: Virtual.

  132. Jain N, et al. Ibrutinib and venetoclax for first-line treatment of CLL. N Engl J Med. 2019;380(22):2095–103.

    Article  CAS  PubMed  Google Scholar 

  133. Wierda WG, et al. Ibrutinib plus venetoclax for first-line treatment of chronic lymphocytic leukemia: primary analysis results from the minimal residual disease cohort of the randomized phase II CAPTIVATE Study. J Clin Oncol. 2021;39(34):3853–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Thompson, P.A., Keating, M.J., Ferrajoli, A. et al. Venetoclax consolidation in high-risk CLL treated with ibrutinib for ≥1 year achieves a high rate of undetectable MRD. Leukemia (2023).

  135. Mato, A.R., et al., Pirtobrutinib (LOXO-305), a next generation, highly selective, non-covalent BTK inhibitor in previously treated Richter transformation: results from the phase 1/2 BRUIN study, in EHA 2021. 2021.

  136. Crombie JL, et al. Updated results from a phase I/II study of duvelisib and venetoclax in patients with relapsed or refractory CLL/SLL or Richter’s syndrome. Blood. 2020;136:46–7.

    Article  Google Scholar 

  137. Mato AR, et al. A once daily, oral, triple combination of BTK inhibitor, mTOR inhibitor and IMiD for treatment of relapsed/refractory Richter’s transformation and de novo diffuse large B-cell lymphoma. Blood. 2020;136(Supplement 1):21–2.

    Article  Google Scholar 

  138. Rogers KA, et al. Use of PD-1 (PDCD1) inhibitors for the treatment of Richter syndrome: experience at a single academic centre. Br J Haematol. 2019;185(2):363–6.

    Article  PubMed  Google Scholar 

  139. Jain N, Senapati J, Thakral B, Ferrajoli A, Thompson P, Burger J, Basu S, Kadia T, Daver N, Borthakur G, Konopleva M, Pemmaraju N, Parry E, Wu CJ, Khoury J, Bueso-Ramos C, Garg N, Wang X, Lopez W, Ayala A, O’Brien S, Kantarjian H, Keating M, Allison J, Sharma P, Wierda W. A phase 2 study of nivolumab combined with ibrutinib in patients with diffuse large B-cell Richter transformation of CLL. Blood Adv. 2023;7(10):1958–66. https://doi.org/10.1182/bloodadvances.2022008790. (PMID: 36287248).

    Article  CAS  PubMed  Google Scholar 

  140. Ortiz-Maldonado V, et al. Results of ARI-0001 CART19 cells in patients with chronic lymphocytic leukemia and Richter’s transformation. Front Oncol. 2022;12: 828471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Memorial Sloan Kettering Cancer Center. Study of immunotherapy in combination with ublituximab and umbralisib in patients with relapsed-refractory CLL or Richter’s transformation. 2015.

  142. City of Hope Medical Center. Copanlisib and nivolumab in treating patients with Richter’s transformation or transformed indolent non-Hodgkin lymphoma. 2019.

  143. Ohio State University Comprehensive Cancer Center. Duvelisib and nivolumab in treating patients with Richter syndrome or transformed follicular lymphoma. 2019.

  144. Vincerx Pharma. A study to evaluate VIP152 in subjects with relapsed/refractory chronic lymphocytic leukemia or Richter syndrome. 2021.

  145. M.D. Anderson Cancer Center. Ipilimumab, ibrutinib, and nivolumab for the treatment of chronic lymphocytic leukemia and Richter transformation. 2022.

  146. Dana-Farber Cancer Institute and Secura Bio, Duvelisib and venetoclax in relapsed or refractory CLL or SLL or RS. 2018, https://ClinicalTrials.gov/show/NCT03534323.

  147. Genmab and AbbVie, Safety & efficacy study of epcoritamab in subjects with R/R chronic lymphocytic leukemia and Richter’s syndrome. 2020, https://ClinicalTrials.gov/show/NCT04623541.

  148. Dana-Farber Cancer Institute and Genentech. A phase II study of venetoclax in combination with dose-adjusted EPOCH-R or R-CHOP for patients with Richter’s syndrome. 2017.

  149. French Innovative Leukemia Organisation. BLINAtumomab after R-CHOP debulking therapy for patients with Richter transformation. 2019.

  150. Niguarda Hospital. Obinutuzumab atezolizumab and venetoclax in Richter transformation. 2019.

  151. German CLL Study Group, Efficacy and safety of zanubrutinib plus tislelizumab for treatment of patients with Richter transformation. 2020, https://ClinicalTrials.gov/show/NCT04271956.

  152. Bnai Zion Medical Center and Tel-Aviv Sourasky Medical Center. A study to evaluate the efficacy and safety of obinutuzumab, ibrutinib, and venetoclax in patients with Richter’s syndrome. 2021.

  153. Weill Medical College of Cornell University and Genentech, Polatuzumab vedotin in combination with chemotherapy in subjects with Richter’s transformation. 2021, https://ClinicalTrials.gov/show/NCT04679012.

  154. Mayo Clinic and National Cancer Institute. Acalabrutinib, venetoclax and durvalumab for the treatment of Richter transformation from chronic lymphocytic leukemia or small lymphocytic lymphoma. 2022.

  155. Institute of Hematology Blood Diseases Hospital and Xian-Janssen Pharmaceutical. R-EPOCH in combination with ibrutinib for patients with classical RT of CLL. 2021.

  156. University of Birmingham, Bloodwise, and Acerta Pharma. A trial of CHOP-R therapy, with or without acalabrutinib, in patients with newly diagnosed Richter’s syndrome. 2019.

Download references

Acknowledgements

The authors thank Dr. Michael Bold, MD (Department of Radiology, Mayo Clinic, Rochester, MN) for providing the radiology images of PET-CT scans in Fig. 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sameer A. Parikh.

Ethics declarations

Conflict of Interest

Research funding has been provided to the institution from Pharmacyclics, Janssen, AstraZeneca, TG Therapeutics, Merck, AbbVie, and Ascentage Pharma for clinical studies in which S.A.P. is a principal investigator. S.A.P. has received honoraria for participation in consulting activities/advisory board meetings for Pharmacyclics, Merck, AstraZeneca, Genentech, GlaxoSmithKline, Adaptive Biotechnologies, Amgen, and AbbVie (no personal compensation); and from DynaMed, Aptitude Health, Curio Science, and MedEd on the Go (with personal compensation). All other authors declare no conflict of interest.

Human and Animal Rights and Informed Consent.

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Audil, H.Y., Kosydar, S.R., Larson, D.P. et al. Richter Transformation of Chronic Lymphocytic Leukemia—Are We Making Progress?. Curr Hematol Malig Rep 18, 144–157 (2023). https://doi.org/10.1007/s11899-023-00701-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-023-00701-y

Keywords

Navigation