Skip to main content

Advertisement

Log in

Phenotypes of Obesity: How it Impacts Management

  • Nutrition and Obesity (S McClave and J Obert, Section Editors)
  • Published:
Current Gastroenterology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The worldwide prevalence of obesity is increasing. Obesity is strongly associated with many chronic health conditions that have been shown to improve with weight loss. However, counseling patients on weight loss can be challenging. Identifying specific aspects of weight management may personalize the conversation about weight loss and better address the individual patient’s health goals and perceived barriers to change.

Recent Findings

Physical and behavioral phenotypes are being identified to better tailor treatment recommendations, given lack of efficacy of currently available interventions.

Summary

The current review provides a summary of the evidence behind the management of several recognized clinical phenotypes, to include body fat distribution (e.g., central obesity), muscle mass (e.g., sarcopenic obesity of the elderly), and problematic eating behaviors (e.g., cravings). Identifying specific aspects of weight management may personalize the conversation about weight loss and better address the individual patient’s health goals and perceived barriers to change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Wang YC, McPherson K, Marsh T, Gortmaker SL, Brown M. Health and economic burden of the projected obesity trends in the USA and the UK. Lancet. 2011;378(9793):815–25. https://doi.org/10.1016/S0140-6736(11)60814-3.

    Article  PubMed  Google Scholar 

  2. Flegal KMCM. Prevalence and trends in obesity among US adults, 1999-2008. JAMA. 2010;303(3):235–41. https://doi.org/10.1001/jama.2009.2014.

    Article  CAS  PubMed  Google Scholar 

  3. Must A, Spadano J, Coakley EH, Field AE, Colditz G, Dietz WH. The disease burden associated with overweight and obesity. JAMA J Am Med Assoc. 1999;282(16):1523–9.

    Article  CAS  Google Scholar 

  4. •• Hurt RT, Edakkanambeth Varayil J, Mundi MS, Martindale RG, Ebbert JO. Designation of obesity as a disease: lessons learned from alcohol and tobacco. Curr Gastroenterol Rep. 2014;16(11):415. https://doi.org/10.1007/s11894-014-0415-z. Excellent review of the impact of obesity and the implications of designating obesity as a disease with lessons learned from other addictions

    Article  PubMed  Google Scholar 

  5. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med. 2003;348(17):1625–38. https://doi.org/10.1056/NEJMoa021423.

    Article  PubMed  Google Scholar 

  6. •• Calle EE, Thun MJ, Petrelli JM, Rodriguez C, Heath CW Jr. Body-mass index and mortality in a prospective cohort of U.S. adults. N Engl J Med. 1999;341(15):1097–105. https://doi.org/10.1056/NEJM199910073411501. Landmark trial revealing an increasing correlation between BMI and risk of death from all causes, cardiovascular disease, as well as cancer

    Article  CAS  PubMed  Google Scholar 

  7. Adams KF, Schatzkin A, Harris TB, et al. Overweight, obesity, and mortality in a large prospective cohort of persons 50 to 71 years old. N Engl J Med. 2006;355(8):763–78. https://doi.org/10.1056/NEJMoa055643.

    Article  CAS  PubMed  Google Scholar 

  8. Fontaine KR, Redden DT, Wang C, Westfall AO, Allison DB. Years of life lost due to obesity. JAMA J Am Med Assoc. 2003;289(2):187–93. https://doi.org/10.1001/jama.289.2.187.

    Article  Google Scholar 

  9. Pajunen P, Kotronen A, Korpi-Hyövälti E, et al. Metabolically healthy and unhealthy obesity phenotypes in the general population: the FIN-D2D survey. BMC Public Health. 2011;11:754. https://doi.org/10.1186/1471-2458-11-754.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Blüher M. The distinction of metabolically “healthy” from “unhealthy” obese individuals. Curr Opin Lipidol. 2010;21(1):38–43. https://doi.org/10.1097/MOL.0b013e3283346ccc.

    Article  PubMed  Google Scholar 

  11. O’Rahilly S, Farooqi IS. The genetics of obesity in humans. In: De Groot LJ, Chrousos G, Dungan K, et al., editors. Endotext. South Dartmouth (MA): MDText.com, Inc.; 2000. http://www.ncbi.nlm.nih.gov/books/NBK279064/. Accessed May 20, 2017.

    Google Scholar 

  12. Komaroff M. For researchers on obesity: historical review of extra body weight definitions. J Obes. 2016;2016 https://doi.org/10.1155/2016/2460285.

  13. 1983 metropolitan height and weight tables. Stat Bull Metrop Life Found. 13;64(1):3–9.

  14. Flegal KM, Kit BK, Orpana H, Graubard BI. Association of all-cause mortality with overweight and obesity using standard body mass index Categories. JAMA. 2013;309(1):71–82. https://doi.org/10.1001/jama.2012.113905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kokkinos P, Myers J, Faselis C, Doumas M, Kheirbek R, Nylen E. BMI–mortality paradox and fitness in African American and Caucasian men with type 2 diabetes. Diabetes Care. 2012;35(5):1021–7. https://doi.org/10.2337/dc11-2407.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Neeland IJ, Turer AT, Ayers MCR, et al. Dysfunctional adiposity and the risk of prediabetes and type 2 diabetes in obese adults. JAMA J Am Med Assoc. 2012;308(11):1150–9. https://doi.org/10.1001/2012.jama.11132.

    Article  CAS  Google Scholar 

  17. Bradshaw PT, Monda KL, Stevens J. Metabolic syndrome in healthy obese, overweight and normal weight individuals: the Atherosclerosis Risk in Communities Study. Obes Silver Spring Md. 2013;21(1):203–9. https://doi.org/10.1002/oby.20248.

    Article  Google Scholar 

  18. Vazquez G, Duval S, Jacobs DR, Silventoinen K. Comparison of body mass index, waist circumference, and waist/hip ratio in predicting incident diabetes: a meta-analysis. Epidemiol Rev. 2007;29(1):115–28. https://doi.org/10.1093/epirev/mxm008.

    Article  PubMed  Google Scholar 

  19. Krotkiewski M, Björntorp P, Sjöström L, Smith U. Impact of obesity on metabolism in men and women. Importance of regional adipose tissue distribution. J Clin Invest. 1983;72(3):1150–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vague J. The degree of masculine differentiation of obesities: a factor determining predisposition to diabetes, atherosclerosis, gout, and uric calculous disease. Am J Clin Nutr. 1956;4(1):20–34.

    CAS  PubMed  Google Scholar 

  21. Kissebah AH, Vydelingum N, Murray R, Evans DJ, Kalkhoff RK, Adams PW. Relation of body fat distribution to metabolic complications of obesity. J Clin Endocrinol Metab. 1982;54(2):254–60. https://doi.org/10.1210/jcem-54-2-254.

    Article  CAS  PubMed  Google Scholar 

  22. Després JP, Moorjani S, Lupien PJ, Tremblay A, Nadeau A, Bouchard C. Regional distribution of body fat, plasma lipoproteins, and cardiovascular disease. Arterioscler Thromb Vasc Biol. 1990;10(4):497–511. https://doi.org/10.1161/01.ATV.10.4.497.

    Article  Google Scholar 

  23. Folsom AR, Burke GL, Ballew C, et al. Relation of body fatness and its distribution to cardiovascular risk factors in young blacks and whites. The role of insulin. Am J Epidemiol. 1989;130(5):911–24.

    Article  CAS  PubMed  Google Scholar 

  24. Rexrode KM, Carey VJ, Hennekens CH, et al. Abdominal adiposity and coronary heart disease in women. JAMA. 1998;280(21):1843–8. https://doi.org/10.1001/jama.280.21.1843.

    Article  CAS  PubMed  Google Scholar 

  25. Thompson CJ, Ryu JE, Craven TE, Kahl FR, Crouse JR. Central adipose distribution is related to coronary atherosclerosis. Arterioscler Thromb Vasc Biol. 1991;11(2):327–33. https://doi.org/10.1161/01.ATV.11.2.327.

    Article  CAS  Google Scholar 

  26. Wei M, Gaskill SP, Haffner SM, Stern MP. Waist circumference as the best predictor of noninsulin dependent diabetes mellitus (NIDDM) compared to body mass index, waist/hip ratio and other anthropometric measurements in Mexican Americans—a 7-year prospective study. Obes Res. 1997;5(1):16–23.

    Article  CAS  PubMed  Google Scholar 

  27. Boyko EJ, Leonetti DL, Bergstrom RW, Newell-Morris L, Fujimoto WY. Visceral adiposity, fasting plasma insulin, and blood pressure in Japanese-Americans. Diabetes Care. 1995;18(2):174–81.

    Article  CAS  PubMed  Google Scholar 

  28. Pouliot MC, Després JP, Nadeau A, et al. Visceral obesity in men. Associations with glucose tolerance, plasma insulin, and lipoprotein levels. Diabetes. 1992;41(7):826–34.

    Article  CAS  PubMed  Google Scholar 

  29. Rissanen J, Hudson R, Ross R. Visceral adiposity, androgens, and plasma lipids in obese men. Metabolism. 1994;43(10):1318–23. https://doi.org/10.1016/0026-0495(94)90229-1.

    Article  CAS  PubMed  Google Scholar 

  30. Seidell JC, Björntorp P, Sjöström L, Kvist H, Sannerstedt R. Visceral fat accumulation in men is positively associated with insulin, glucose, and C-peptide levels, but negatively with testosterone levels. Metabolism. 1990;39(9):897–901. https://doi.org/10.1016/0026-0495(90)90297-P.

    Article  CAS  PubMed  Google Scholar 

  31. Galassi A, Reynolds K, He J. Metabolic syndrome and risk of cardiovascular disease: a meta-analysis. Am J Med. 2006;119(10):812–9. https://doi.org/10.1016/j.amjmed.2006.02.031.

    Article  CAS  PubMed  Google Scholar 

  32. Expert Panel on Detection E. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III). JAMA. 2001;285(19):2486–97. https://doi.org/10.1001/jama.285.19.2486.

    Article  Google Scholar 

  33. Lean ME, Han TS, Morrison CE. Waist circumference as a measure for indicating need for weight management. BMJ. 1995;311(6998):158–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Verweij LM, Terwee CB, Proper KI, Hulshof CT, van Mechelen W. Measurement error of waist circumference: gaps in knowledge. Public Health Nutr. 2013;16(2):281–8. https://doi.org/10.1017/S1368980012002741.

    Article  PubMed  Google Scholar 

  35. Klein S, Fontana L, Young VL, et al. Absence of an effect of liposuction on insulin action and risk factors for coronary heart disease. N Engl J Med. 2004;350(25):2549–57. https://doi.org/10.1056/NEJMoa033179.

    Article  CAS  PubMed  Google Scholar 

  36. Stallone DD, Stunkard AJ, Wadden TA, Foster GD, Boorstein J, Arger P. Weight loss and body fat distribution: a feasibility study using computed tomography. Int J Obes. 1991;15(11):775–80.

    CAS  PubMed  Google Scholar 

  37. Egger G, Bolton A, O’Neill M, Freeman D. Effectiveness of an abdominal obesity reduction programme in men: the GutBuster ‘waist loss’ programme. Int J Obes Relat Metab Disord J Int Assoc Study Obes. 1996;20(3):227–31.

    CAS  Google Scholar 

  38. Caan B, Armstrong MA, Selby JV, et al. Changes in measurements of body fat distribution accompanying weight change. Int J Obes Relat Metab Disord J Int Assoc Study Obes. 1994;18(6):397–404.

    CAS  Google Scholar 

  39. Smith SR, Stenlof KS, Greenway FL, et al. Orlistat 60 mg reduces visceral adipose tissue: a 24-week randomized, placebo-controlled, multicenter trial. Obesity. 2011;19(9):1796–803. https://doi.org/10.1038/oby.2011.143.

    Article  PubMed  Google Scholar 

  40. Jendle J, Nauck MA, Matthews DR, et al. Weight loss with liraglutide, a once-daily human glucagon-like peptide-1 analogue for type 2 diabetes treatment as monotherapy or added to metformin, is primarily as a result of a reduction in fat tissue. Diabetes Obes Metab. 2009;11(12):1163–72. https://doi.org/10.1111/j.1463-1326.2009.01158.x.

    Article  CAS  PubMed  Google Scholar 

  41. Suzuki D, Toyoda M, Kimura M, et al. Effects of liraglutide, a human glucagon-like peptide-1 analogue, on body weight, body fat area and body fat-related markers in patients with type 2 diabetes mellitus. Intern Med. 2013;52(10):1029–34. https://doi.org/10.2169/internalmedicine.52.8961.

    Article  CAS  PubMed  Google Scholar 

  42. Vilsbøll T, Christensen M, Junker AE, Knop FK, Gluud LL. Effects of glucagon-like peptide-1 receptor agonists on weight loss: systematic review and meta-analyses of randomised controlled trials. The BMJ. 2012;344 https://doi.org/10.1136/bmj.d7771.

  43. Smith SR, Fujioka K, Gupta AK, et al. Combination therapy with naltrexone and bupropion for obesity reduces total and visceral adiposity. Diabetes Obes Metab. 2013;15(9):863–6. https://doi.org/10.1111/dom.12095.

    Article  CAS  PubMed  Google Scholar 

  44. Kim Y-S, Lee Y, Chung Y-S, et al. Prevalence of sarcopenia and sarcopenic obesity in the Korean population based on the Fourth Korean National Health and Nutritional Examination Surveys. J Gerontol Ser A. 2012;67(10):1107–13. https://doi.org/10.1093/gerona/gls071.

    Article  Google Scholar 

  45. Villareal DT, Apovian CM, Kushner RF, Klein S. Obesity in older adults: technical review and position statement of the American Society for Nutrition and NAASO, the Obesity Society. Am J Clin Nutr. 2005;82(5):923–34.

    CAS  PubMed  Google Scholar 

  46. •• Bouchonville MF, Villareal DT. Sarcopenic obesity—how do we treat it? Curr Opin Endocrinol Diabetes Obes. 2013;20(5):412–9. https://doi.org/10.1097/01.med.0000433071.11466.7f. A comprehensive review on the pathophysiology and management of sarcopenic obesity in the elderly.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Villareal DT, Chode S, Parimi N, et al. Weight loss, exercise, or both and physical function in obese older adults. N Engl J Med. 2011;364(13):1218–29. https://doi.org/10.1056/NEJMoa1008234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hameed UA, Manzar D, Raza S, Shareef MY, Hussain ME. Resistance training leads to clinically meaningful improvements in control of glycemia and muscular strength in untrained middle-aged patients with type 2 diabetes mellitus. North Am J Med Sci. 2012;4(8):336–43. https://doi.org/10.4103/1947-2714.99507.

    Article  Google Scholar 

  49. Lambert CP, Wright NR, Finck BN, Villareal DT. Exercise but not diet-induced weight loss decreases skeletal muscle inflammatory gene expression in frail obese elderly persons. J Appl Physiol. 2008;105(2):473–8. https://doi.org/10.1152/japplphysiol.00006.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Schirwis E, Agbulut O, Vadrot N, et al. The beneficial effect of myostatin deficiency on maximal muscle force and power is attenuated with age. Exp Gerontol. 2013;48(2):183–90. https://doi.org/10.1016/j.exger.2012.11.008.

    Article  CAS  PubMed  Google Scholar 

  51. Yarasheski KE, Bhasin S, Sinha-Hikim I, Pak-Loduca J, Gonzalez-Cadavid NF. Serum myostatin-immunoreactive protein is increased in 60-92 year old women and men with muscle wasting. J Nutr Health Aging. 2002;6(5):343–8.

    CAS  PubMed  Google Scholar 

  52. Grobet L, Martin LJ, Poncelet D, et al. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat Genet. 1997;17(1):71–4. https://doi.org/10.1038/ng0997-71.

    Article  CAS  PubMed  Google Scholar 

  53. Nakatani M, Kokubo M, Ohsawa Y, Sunada Y, Tsuchida K. Follistatin-derived peptide expression in muscle decreases adipose tissue mass and prevents hepatic steatosis. Am J Physiol Endocrinol Metab. 2011;300(3):E543–53. https://doi.org/10.1152/ajpendo.00430.2010.

    Article  CAS  PubMed  Google Scholar 

  54. Zhang L, Rajan V, Lin E, et al. Pharmacological inhibition of myostatin suppresses systemic inflammation and muscle atrophy in mice with chronic kidney disease. FASEB J Off Publ Fed Am Soc Exp Biol. 2011;25(5):1653–63. https://doi.org/10.1096/fj.10-176917.

    CAS  Google Scholar 

  55. Wagner KR, Fleckenstein JL, Amato AA, et al. A phase I/IItrial of MYO-029 in adult subjects with muscular dystrophy. Ann Neurol. 2008;63(5):561–71. https://doi.org/10.1002/ana.21338.

    Article  CAS  PubMed  Google Scholar 

  56. Krivickas LS, Walsh R, Amato AA. Single muscle fiber contractile properties in adults with muscular dystrophy treated with MYO-029. Muscle Nerve. 2009;39(1):3–9. https://doi.org/10.1002/mus.21200.

    Article  CAS  PubMed  Google Scholar 

  57. Giannesini B, Vilmen C, Amthor H, Bernard M, Bendahan D. Lack of myostatin impairs mechanical performance and ATP cost of contraction in exercising mouse gastrocnemius muscle in vivo. Am J Physiol Endocrinol Metab. 2013;305(1):E33–40. https://doi.org/10.1152/ajpendo.00651.2012.

    Article  CAS  PubMed  Google Scholar 

  58. Gruson D, Ginion A, Lause P, Ketelslegers J-M, Thissen J-P, Bertrand L. Urotensin II and urocortin trigger the expression of myostatin, a negative regulator of cardiac growth, in cardiomyocytes. Peptides. 2012;33(2):351–3. https://doi.org/10.1016/j.peptides.2011.12.017.

    Article  CAS  PubMed  Google Scholar 

  59. Giannoulis MG, Martin FC, Nair KS, Umpleby AM, Sonksen P. Hormone replacement therapy and physical function in healthy older men. Time to talk hormones? Endocr Rev. 2012;33(3):314–77. https://doi.org/10.1210/er.2012-1002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hildreth KL, Barry DW, Moreau KL, et al. Effects of testosterone and progressive resistance exercise in healthy, highly functioning older men with low-normal testosterone levels. J Clin Endocrinol Metab. 2013;98(5):1891–900. https://doi.org/10.1210/jc.2012-3695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bhasin S, Woodhouse L, Casaburi R, et al. Older men are as responsive as young men to the anabolic effects of graded doses of testosterone on the skeletal muscle. J Clin Endocrinol Metab. 2005;90(2):678–88. https://doi.org/10.1210/jc.2004-1184.

    Article  CAS  PubMed  Google Scholar 

  62. Bhasin S, Cunningham GR, Hayes FJ, et al. Testosterone therapy in men with androgen deficiency syndromes: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2010;95(6):2536-2559. doi:https://doi.org/10.1210/jc.2009-2354.

  63. Blackman MR, Sorkin JD, Münzer T, et al. Growth hormone and sex steroid administration in healthy aged women and men: a randomized controlled trial. JAMA. 2002;288(18):2282–92. https://doi.org/10.1001/jama.288.18.2282.

    Article  CAS  PubMed  Google Scholar 

  64. Makimura H, Feldpausch MN, Rope AM, et al. Metabolic effects of a growth hormone-releasing factor in obese subjects with reduced growth hormone secretion: a randomized controlled trial. J Clin Endocrinol Metab. 2012;97(12):4769–79. https://doi.org/10.1210/jc.2012-2794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Der-Torossian H, Wysong A, Shadfar S, Willis MS, McDunn J, Couch ME. Metabolic derangements in the gastrocnemius and the effect of compound a therapy in a murine model of cancer cachexia. J Cachex Sarcopenia Muscle. 2013;4(2):145–55. https://doi.org/10.1007/s13539-012-0101-7.

    Article  Google Scholar 

  66. Van Gaal LF, Mertens IL, De Block CE. Mechanisms linking obesity with cardiovascular disease. Nature. 2006;444(7121):875–80. https://doi.org/10.1038/nature05487.

    Article  PubMed  Google Scholar 

  67. Acosta A, Abu Dayyeh BK, Port JD, Camilleri M. Challenges and opportunities in management of obesity. Gut. 2014;63(4):687–95. https://doi.org/10.1136/gutjnl-2013-306235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Small DM, Jones-Gotman M, Dagher A. Feeding-induced dopamine release in dorsal striatum correlates with meal pleasantness ratings in healthy human volunteers. NeuroImage. 2003;19(4):1709–15. https://doi.org/10.1016/S1053-8119(03)00253-2.

    Article  PubMed  Google Scholar 

  69. Wang G-J, Tomasi D, Convit A, et al. BMI modulates calorie-dependent dopamine changes in accumbens from glucose intake. PLoS One. 2014;9(7):e101585. https://doi.org/10.1371/journal.pone.0101585.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Billes SK, Sinnayah P, Cowley MA. Naltrexone/bupropion for obesity: an investigational combination pharmacotherapy for weight loss. Pharmacol Res. 2014;84:1–11. https://doi.org/10.1016/j.phrs.2014.04.004.

    Article  CAS  PubMed  Google Scholar 

  71. Pelchat ML. Food cravings in young and elderly adults. Appetite. 1997;28(2):103–13. https://doi.org/10.1006/appe.1996.0063.

    Article  CAS  PubMed  Google Scholar 

  72. Hallam J, Boswell RG, DeVito EE, Kober H. Gender-related differences in food craving and obesity. Yale J Biol Med. 2016;89(2):161–73.

    PubMed  PubMed Central  Google Scholar 

  73. Zellner D, Garriga-Trillo A, Rohm E, Centeno S, Parker S. Food liking and craving: a cross-cultural approach. Appetite. 1999;33(1):61–70. https://doi.org/10.1006/appe.1999.0234.

    Article  CAS  PubMed  Google Scholar 

  74. García-García I, Horstmann A, Jurado MA, et al. Reward processing in obesity, substance addiction and non-substance addiction. Obes Rev. 2014;15(11):853–69. https://doi.org/10.1111/obr.12221.

    Article  PubMed  Google Scholar 

  75. Greenway FL, Fujioka K, Plodkowski RA, et al. Effect of naltrexone plus bupropion on weight loss in overweight and obese adults (COR-I): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2010;376(9741):595–605. https://doi.org/10.1016/S0140-6736(10)60888-4.

    Article  CAS  PubMed  Google Scholar 

  76. Wadden TA, Foreyt JP, Foster GD, et al. Weight loss with naltrexone SR/bupropion SR combination therapy as an adjunct to behavior modification: the COR-BMOD trial. Obes Silver Spring Md. 2011;19(1):110–20. https://doi.org/10.1038/oby.2010.147.

    Article  CAS  Google Scholar 

  77. Moldovan CP, Weldon AJ, Daher NS, et al. Effects of a meal replacement system alone or in combination with phentermine on weight loss and food cravings. Obesity. 2016;24(11):2344–50. https://doi.org/10.1002/oby.21649.

    Article  CAS  PubMed  Google Scholar 

  78. van Bloemendaal L, Veltman DJ, Ten Kulve JS, et al. Brain reward-system activation in response to anticipation and consumption of palatable food is altered by glucagon-like peptide-1 receptor activation in humans. Diabetes Obes Metab. 2015;17(9):878–86. https://doi.org/10.1111/dom.12506.

    Article  PubMed  Google Scholar 

  79. ten Kulve JS, Veltman DJ, van Bloemendaal L, et al. Endogenous GLP-1 mediates postprandial reductions in activation in central reward and satiety areas in patients with type 2 diabetes. Diabetologia. 2015;58(12):2688–98. https://doi.org/10.1007/s00125-015-3754-x.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Farr OM, Tsoukas MA, Triantafyllou G, et al. Short-term administration of the GLP-1 analog liraglutide decreases circulating leptin and increases GIP levels and these changes are associated with alterations in CNS responses to food cues: a randomized, placebo-controlled, crossover study. Metabolism. 2016;65(7):945–53. https://doi.org/10.1016/j.metabol.2016.03.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. American Psychiatric Association. Diagnostic and statistical manual of mental disoders. Fifth edition. Arlington: American Psychiatric Association; 2013.

  82. Vocks S, Tuschen-Caffier B, Pietrowsky R, Rustenbach SJ, Kersting A, Herpertz S. Meta-analysis of the effectiveness of psychological and pharmacological treatments for binge eating disorder. Int J Eat Disord. 2010;43(3):205–17. https://doi.org/10.1002/eat.20696.

    PubMed  Google Scholar 

  83. Reas DL, Grilo CM. Review and meta-analysis of Ppharmacotherapy for binge-eating disorder. Obes Silver Spring Md. 2008;16(9) https://doi.org/10.1038/oby.2008.333.

  84. McElroy SL, Arnold LM, Shapira NA, et al. Topiramate in the treatment of binge eating disorder associated with obesity: a randomized, placebo-controlled trial. Am J Psychiatry. 2003;160(2):255–61. https://doi.org/10.1176/appi.ajp.160.2.255.

    Article  PubMed  Google Scholar 

  85. McElroy SL, Hudson JI, Capece JA, et al. Topiramate for the treatment of binge eating disorder associated with obesity: a placebo-controlled study. Biol Psychiatry. 2007;61(9):1039–48. https://doi.org/10.1016/j.biopsych.2006.08.008.

    Article  CAS  PubMed  Google Scholar 

  86. Pataky Z, Gasteyger C, Ziegler O, Rissanen A, Hanotin C, Golay A. Efficacy of rimonabant in obese patients with binge eating disorder. Exp Clin Endocrinol Diabetes Off J Ger Soc Endocrinol Ger Diabetes Assoc. 2013;121(1):20–6. https://doi.org/10.1055/s-0032-1329957.

    CAS  Google Scholar 

  87. •• McElroy SL, Hudson J, Ferreira-Cornwell MC, Radewonuk J, Whitaker T, Gasior M. Lisdexamfetamine dimesylate for adults with moderate to severe binge eating disorder: results of two pivotal phase 3 randomized controlled trials. Neuropsychopharmacology. 2016;41(5):1251–60. https://doi.org/10.1038/npp.2015.275. Pivotal randomized controlled trials that showed superiority of Lisdexamfetamine over placebo in the treatment of binge-eating disorder, which eventually led to FDA approval of the drug

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manpreet S. Mundi.

Ethics declarations

Conflict of Interest

Meera Shah and Manpreet Mundi declare no conflict of interest. Ryan Hurt is a consultant for Nestle.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Nutrition and Obesity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, M., Hurt, R.T. & Mundi, M.S. Phenotypes of Obesity: How it Impacts Management. Curr Gastroenterol Rep 19, 55 (2017). https://doi.org/10.1007/s11894-017-0598-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11894-017-0598-1

Keywords

Navigation