Skip to main content

Advertisement

Log in

Self-Antigen Expression in the Peripheral Immune System: Roles in Self-Tolerance and Type 1 Diabetes Pathogenesis

  • Pathogenesis of Type 1 Diabetes (A Pugliese, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Type 1 diabetes (T1D) may result from a breakdown in peripheral tolerance that is partially controlled by the ectopic expression of peripheral tissue antigens (PTAs) in lymph nodes. Various subsets of lymph node stromal cells and certain hematopoietic cells play a role in maintaining T cell tolerance. These specialized cells have been shown to endogenously transcribe, process, and present a range of PTAs to naive T cells and mediate the clonal deletion or inactivation of autoreactive cells. During the progression of T1D, inflammation leads to reduced PTA expression in the pancreatic lymph nodes and the production of novel islet antigens that T cells are not tolerized against. These events allow for the escape and activation of autoreactive T cells and may contribute to the pathogenesis of T1D. In this review, we discuss recent findings in this area and propose possible therapies that may help reestablish self-tolerance during T1D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Storling J, Overgaard AJ, Brorsson CA, et al. Do post-translational beta cell protein modifications trigger type 1 diabetes? Diabetologia. 2013;56:2347–54.

    Article  PubMed  Google Scholar 

  2. Prasad S, Kohm AP, McMahon JS, et al. Pathogenesis of NOD diabetes is initiated by reactivity to the insulin B chain 9-23 epitope and involves functional epitope spreading. J Autoimmun. 2012;39:347–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Di Lorenzo TP, Peakman M, Roep BO. Translational mini-review series on type 1 diabetes: systematic analysis of T cell epitopes in autoimmune diabetes. Clin Exp Immunol. 2007;148:1–16.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Gottlieb PA, Delong T, Baker RL, et al. Chromogranin A is a T cell antigen in human type 1 diabetes. J Autoimmun. 2013.

  5. Stadinski BD, Delong T, Reisdorph N, et al. Chromogranin A is an autoantigen in type 1 diabetes. Nat Immunol. 2010;11:225–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Wenzlau JM, Juhl K, Yu L, et al. The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes. Proc Natl Acad Sci U S A. 2007;104:17040–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Anderson MS, Venanzi ES, Klein L, et al. Projection of an immunological self shadow within the thymus by the aire protein. Science. 2002;298:1395–401.

    Article  CAS  PubMed  Google Scholar 

  8. Nichols LA, Chen Y, Colella TA, et al. Deletional self-tolerance to a melanocyte/melanoma antigen derived from tyrosinase is mediated by a radio-resistant cell in peripheral and mesenteric lymph nodes. J Immunol. 2007;179:993–1003.

    Article  CAS  PubMed  Google Scholar 

  9. Lee JW, Epardaud M, Sun J, et al. Peripheral antigen display by lymph node stroma promotes T cell tolerance to intestinal self. Nat Immunol. 2007;8:181–90.

    Article  CAS  PubMed  Google Scholar 

  10. Pugliese A, Brown D, Garza D, et al. Self-antigen-presenting cells expressing diabetes-associated autoantigens exist in both thymus and peripheral lymphoid organs. J Clin Invest. 2001;107:555–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Garcia CA, Prabakar KR, Diez J, et al. Dendritic cells in human thymus and periphery display a proinsulin epitope in a transcription-dependent, capture-independent fashion. J Immunol. 2005;175:2111–22.

    Article  CAS  PubMed  Google Scholar 

  12. Zheng X, Yin L, Liu Y, et al. Expression of tissue-specific autoantigens in the hematopoietic cells leads to activation-induced cell death of autoreactive T cells in the secondary lymphoid organs. Eur J Immunol. 2004;34:3126–34.

    Article  CAS  PubMed  Google Scholar 

  13. Steptoe RJ, Ritchie JM, Harrison LC. Transfer of hematopoietic stem cells encoding autoantigen prevents autoimmune diabetes. J Clin Invest. 2003;111:1357–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Malhotra D, Fletcher AL, Turley SJ. Stromal and hematopoietic cells in secondary lymphoid organs: partners in immunity. Immunol Rev. 2013;251:160–76. A comprehensive overview of the lymph node enviroment and how interactions between the stromal and hematopoietic cells regulate immune cell function and shape the adaptive immune response.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Fletcher AL, Malhotra D, Turley SJ. Lymph node stroma broaden the peripheral tolerance paradigm. Trends Immunol. 2011;32:12–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Malhotra D, Fletcher AL, Astarita J, et al. Transcriptional profiling of stroma from inflamed and resting lymph nodes defines immunological hallmarks. Nat Immunol. 2012;13:499–510.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Reynoso ED, Lee JW, Turley SJ. Peripheral tolerance induction by lymph node stroma. Adv Exp Med Biol. 2009;633:113–27.

    Article  CAS  PubMed  Google Scholar 

  18. Yip L, Creusot RJ, Pager CT, et al. Reduced DEAF1 function during type 1 diabetes inhibits translation in lymph node stromal cells by suppressing Eif4g3. J Mol Cell Biol. 2013;5:99–110. This study shows that the transcriptional regulator DEAF1 regulates the processing and presentation of PTAs in LNSCs by controlling Eif4g3 expression. This process is compromised by the splicing of DEAF1 in T1D patients and NOD mice.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Fletcher AL, Malhotra D, Acton SE, et al. Reproducible isolation of lymph node stromal cells reveals site-dependent differences in fibroblastic reticular cells. Front Immunol. 2011;2:35.

    PubMed Central  PubMed  Google Scholar 

  20. Cohen JN, Tewalt EF, Rouhani SJ, et al. Tolerogenic properties of lymphatic endothelial cells are controlled by the lymph node microenvironment. PLoS ONE. 2014;9:e87740. This study demonstrates the heterogeneity of cells within the LEC subset and shows how the lymph node microenvironment plays an important role in bestowing LECs with potent tolerogenic properties.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Gardner JM, Devoss JJ, Friedman RS, et al. Deletional tolerance mediated by extrathymic Aire-expressing cells. Science. 2008;321:843–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Magnusson FC, Liblau RS, von Boehmer H, et al. Direct presentation of antigen by lymph node stromal cells protects against CD8 T-cell-mediated intestinal autoimmunity. Gastroenterology. 2008;134:1028–37.

    Article  CAS  PubMed  Google Scholar 

  23. Cohen JN, Guidi CJ, Tewalt EF, et al. Lymph node-resident lymphatic endothelial cells mediate peripheral tolerance via Aire-independent direct antigen presentation. J Exp Med. 2010;207:681–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Fletcher AL, Lukacs-Kornek V, Reynoso ED, et al. Lymph node fibroblastic reticular cells directly present peripheral tissue antigen under steady-state and inflammatory conditions. J Exp Med. 2010;207:689–97.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Tewalt EF, Cohen JN, Rouhani SJ, et al. Lymphatic endothelial cells induce tolerance via PD-L1 and lack of costimulation leading to high-level PD-1 expression on CD8 T cells. Blood. 2012;120:4772–82. Studies showed that LECs directly express PTAs and induce deletion of specific CD8 T cells via the programmed death ligand-1 pathway.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Reynoso ED, Elpek KG, Francisco L, et al. Intestinal tolerance is converted to autoimmune enteritis upon PD-1 ligand blockade. J Immunol. 2009;182:2102–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Gardner JM, Metzger TC, McMahon EJ, et al. Extrathymic Aire-expressing cells are a distinct bone marrow-derived population that induce functional inactivation of CD4(+) T cells. Immunity. 2013;39:560–72. A detailed characterization of the tolerogenic eTACs. Studies demonstrate that this hematopoietic population of PTA-expressing cells can inactivate CD4+ T cells by the lack of CD28 co-stimulation.

    Article  CAS  PubMed  Google Scholar 

  28. Narendran P, Neale AM, Lee BH, et al. Proinsulin is encoded by an RNA splice variant in human blood myeloid cells. Proc Natl Acad Sci U S A. 2006;103:16430–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Herzog BH, Fu J, Wilson SJ, et al. Podoplanin maintains high endothelial venule integrity by interacting with platelet CLEC-2. Nature. 2013;502:105–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Yip L, Su L, Sheng D, et al. Deaf1 isoforms control the expression of genes encoding peripheral tissue antigens in the pancreatic lymph nodes during type 1 diabetes. Nat Immunol. 2009;10:1026–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Bottomley MJ, Collard MW, Huggenvik JI, et al. The SAND domain structure defines a novel DNA-binding fold in transcriptional regulation. Nat Struct Biol. 2001;8:626–33.

    Article  CAS  PubMed  Google Scholar 

  32. Jensik PJ, Huggenvik JI, Collard MW. Identification of a nuclear export signal and protein interaction domains in deformed epidermal autoregulatory factor-1 (DEAF-1). J Biol Chem. 2004;279:32692–9.

    Article  CAS  PubMed  Google Scholar 

  33. Org T, Chignola F, Hetenyi C, et al. The autoimmune regulator PHD finger binds to non-methylated histone H3K4 to activate gene expression. EMBO Rep. 2008;9:370–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Suri A, Walters JJ, Gross ML, et al. Natural peptides selected by diabetogenic DQ8 and murine I-A(g7) molecules show common sequence specificity. J Clin Invest. 2005;115:2268–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Yoon JW, Yoon CS, Lim HW, et al. Control of autoimmune diabetes in NOD mice by GAD expression or suppression in beta cells. Science. 1999;284:1183–7.

    Article  CAS  PubMed  Google Scholar 

  36. Giarratana N, Penna G, Adorini L. Animal models of spontaneous autoimmune disease: type 1 diabetes in the nonobese diabetic mouse. Methods Mol Biol. 2007;380:285–311.

    Article  CAS  PubMed  Google Scholar 

  37. Thebault-Baumont K, Dubois-Laforgue D, Krief P, et al. Acceleration of type 1 diabetes mellitus in proinsulin 2-deficient NOD mice. J Clin Invest. 2003;111:851–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Martin-Pagola A, Pileggi A, Zahr E, et al. Insulin2 gene (Ins2) transcription by NOD bone marrow-derived cells does not influence autoimmune diabetes development in NOD-Ins2 knockout mice. Scand J Immunol. 2009;70:439–46.

    Article  CAS  PubMed  Google Scholar 

  39. Faideau B, Briand JP, Lotton C, et al. Expression of preproinsulin-2 gene shapes the immune response to preproinsulin in normal mice. J Immunol. 2004;172:25–33.

    Article  CAS  PubMed  Google Scholar 

  40. Fan Y, Rudert WA, Grupillo M, et al. Thymus-specific deletion of insulin induces autoimmune diabetes. EMBO J. 2009;28:2812–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Grupillo M, Gualtierotti G, He J, et al. Essential roles of insulin expression in Aire+ tolerogenic dendritic cells in maintaining peripheral self-tolerance of islet beta-cells. Cell Immunol. 2012;273:115–23.

    Article  CAS  PubMed  Google Scholar 

  42. Pugliese A, Zeller M, Fernandez Jr A, et al. The insulin gene is transcribed in the human thymus and transcription levels correlated with allelic variation at the INS VNTR-IDDM2 susceptibility locus for type 1 diabetes. Nat Genet. 1997;15:293–7.

    Article  CAS  PubMed  Google Scholar 

  43. Bennett ST, Lucassen AM, Gough SC, et al. Susceptibility to human type 1 diabetes at IDDM2 is determined by tandem repeat variation at the insulin gene minisatellite locus. Nat Genet. 1995;9:284–92.

    Article  CAS  PubMed  Google Scholar 

  44. Bennett ST, Wilson AJ, Cucca F, et al. IDDM2-VNTR-encoded susceptibility to type 1 diabetes: dominant protection and parental transmission of alleles of the insulin gene-linked minisatellite locus. J Autoimmun. 1996;9:415–21.

    Article  CAS  PubMed  Google Scholar 

  45. Eizirik DL, Sammeth M, Bouckenooghe T, et al. The human pancreatic islet transcriptome: expression of candidate genes for type 1 diabetes and the impact of pro-inflammatory cytokines. PLoS Genet. 2012;8:e1002552.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Ortis F, Naamane N, Flamez D, et al. Cytokines interleukin-1beta and tumor necrosis factor-alpha regulate different transcriptional and alternative splicing networks in primary beta-cells. Diabetes. 2010;59:358–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Modrek B, Lee C. A genomic view of alternative splicing. Nat Genet. 2002;30:13–9.

    Article  CAS  PubMed  Google Scholar 

  48. Modrek B, Resch A, Grasso C, et al. Genome-wide detection of alternative splicing in expressed sequences of human genes. Nucleic Acids Res. 2001;29:2850–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Ng B, Yang F, Huston DP, et al. Increased noncanonical splicing of autoantigen transcripts provides the structural basis for expression of untolerized epitopes. J Allergy Clin Immunol. 2004;114:1463–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Dogra RS, Vaidyanathan P, Prabakar KR, et al. Alternative splicing of G6PC2, the gene coding for the islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP), results in differential expression in human thymus and spleen compared with pancreas. Diabetologia. 2006;49:953–7.

    Article  CAS  PubMed  Google Scholar 

  51. Park YS, Kawasaki E, Kelemen K, et al. Humoral autoreactivity to an alternatively spliced variant of ICA512/IA-2 in type I diabetes. Diabetologia. 2000;43:1293–301.

    Article  CAS  PubMed  Google Scholar 

  52. Diez J, Park Y, Zeller M, et al. Differential splicing of the IA-2 mRNA in pancreas and lymphoid organs as a permissive genetic mechanism for autoimmunity against the IA-2 type 1 diabetes autoantigen. Diabetes. 2001;50:895–900.

    Article  CAS  PubMed  Google Scholar 

  53. Hutton JC, Davidson HW. Cytokine-induced dicing and splicing in the beta-cell and the immune response in type 1 diabetes. Diabetes. 2010;59:335–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Peakman M, Stevens EJ, Lohmann T, et al. Naturally processed and presented epitopes of the islet cell autoantigen IA-2 eluted from HLA-DR4. J Clin Invest. 1999;104:1449–57.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. de Jong VM, Abreu JR, Verrijn Stuart AA, et al. Alternative splicing and differential expression of the islet autoantigen IGRP between pancreas and thymus contributes to immunogenicity of pancreatic islets but not diabetogenicity in humans. Diabetologia. 2013;56:2651–8.

    Article  PubMed  Google Scholar 

  56. Yip L, Taylor C, Whiting CC, et al. Diminished adenosine A1 receptor expression in pancreatic alpha-cells may contribute to the pathology of type 1 diabetes. Diabetes. 2013;62:4208–19.

    Article  CAS  PubMed  Google Scholar 

  57. Dunne JL, Overbergh L, Purcell AW, et al. Posttranslational modifications of proteins in type 1 diabetes: the next step in finding the cure? Diabetes. 2012;61:1907–14. A recent review highlighting possible posttranslational modifications of proteins that may be involved in T1D.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Atkinson MA, Bluestone JA, Eisenbarth GS, et al. How does type 1 diabetes develop?: The notion of homicide or beta-cell suicide revisited. Diabetes. 2011;60:1370–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Marrack P, Kappler JW. Do MHCII-presented neoantigens drive type 1 diabetes and other autoimmune diseases? Cold Spring Harb Perspect Med. 2012;2:a007765.

    PubMed  Google Scholar 

  60. Wegner N, Lundberg K, Kinloch A, et al. Autoimmunity to specific citrullinated proteins gives the first clues to the etiology of rheumatoid arthritis. Immunol Rev. 2010;233:34–54.

    Article  CAS  PubMed  Google Scholar 

  61. Trigwell SM, Radford PM, Page SR, et al. Islet glutamic acid decarboxylase modified by reactive oxygen species is recognized by antibodies from patients with type 1 diabetes mellitus. Clin Exp Immunol. 2001;126:242–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Mannering SI, Harrison LC, Williamson NA, et al. The insulin A-chain epitope recognized by human T cells is posttranslationally modified. J Exp Med. 2005;202:1191–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Bauman J, Jearawiriyapaisarn N, Kole R. Therapeutic potential of splice-switching oligonucleotides. Oligonucleotides. 2009;19:1–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. van Deutekom JC, Janson AA, Ginjaar IB, et al. Local dystrophin restoration with antisense oligonucleotide PRO051. N Engl J Med. 2007;357:2677–86.

    Article  PubMed  Google Scholar 

  65. Luo YB, Mastaglia FL, Wilton SD. Normal and aberrant splicing of LMNA. J Med Genet. 2014.

  66. Wan J, Bauman JA, Graziewicz MA, et al. Oligonucleotide therapeutics in cancer. Cancer Treat Res. 2013;158:213–33.

    Article  PubMed  Google Scholar 

  67. Yilmaz-Elis S, Aartsma-Rus A, Vroon A, et al. Antisense oligonucleotide mediated exon skipping as a potential strategy for the treatment of a variety of inflammatory diseases such as rheumatoid arthritis. Ann Rheum Dis. 2012;71 Suppl 2:i75–7.

    Article  CAS  PubMed  Google Scholar 

  68. Mourich DV, Oda SK, Schnell FJ, et al. Alternative splice forms of CTLA-4 induced by antisense mediated splice-switching influences autoimmune diabetes susceptibility in NOD mice. Nucleic Acids Ther. 2014.

  69. Hua Y, Krainer AR. Antisense-mediated exon inclusion. Methods Mol Biol. 2012;867:307–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Kodama K, Butte AJ, Creusot RJ, et al. Tissue- and age-specific changes in gene expression during disease induction and progression in NOD mice. Clin Immunol. 2008;129:195–201.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Creusot RJ, Chang P, Healey DG, et al. A short pulse of IL-4 delivered by DCs electroporated with modified mRNA can both prevent and treat autoimmune diabetes in NOD mice. Mol Ther. 2010;18:2112–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Creusot RJ, Yaghoubi SS, Kodama K, et al. Tissue-targeted therapy of autoimmune diabetes using dendritic cells transduced to express IL-4 in NOD mice. Clin Immunol. 2008;127:176–87.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Feili-Hariri M, Falkner DH, Gambotto A, et al. Dendritic cells transduced to express interleukin-4 prevent diabetes in nonobese diabetic mice with advanced insulitis. Hum Gene Ther. 2003;14:13–23.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Institutes of Health (NIH). Linda Yip was supported by the Juvenile Diabetes Research Foundation (JDRF) Transition Award. Work involving lymph node specimens from T1D patients was supported by the JDRF nPOD (Network for the Pancreatic Organ Donor with Diabetes). The authors wish to thank C. Garrison Fathman (Stanford University) for his useful comments and R. J. Creusot (Columbia University) for help generating the data shown in Fig. 2.

Compliance with Ethics Guidelines

Conflict of Interest

Rebecca Fuhlbrigge and Linda Yip declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda Yip.

Additional information

This article is part of the Topical Collection on Pathogenesis of Type 1 Diabetes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuhlbrigge, R., Yip, L. Self-Antigen Expression in the Peripheral Immune System: Roles in Self-Tolerance and Type 1 Diabetes Pathogenesis. Curr Diab Rep 14, 525 (2014). https://doi.org/10.1007/s11892-014-0525-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-014-0525-x

Keywords

Navigation