Skip to main content
Log in

The Sarcomeric Spring Protein Titin: Biophysical Properties, Molecular Mechanisms, and Genetic Mutations Associated with Heart Failure and Cardiomyopathy

  • Myocardial Disease (A Abbate and G Sinagra, Section Editors)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The giant protein titin forms the “elastic” filament of the sarcomere, essential for the mechanical compliance of the heart muscle. Titin serves a biological spring, and therefore structural modifications of titin affect function of the myocardium and are associated with heart failure and cardiomyopathy.

Recent Findings

In this review, we discuss the current understanding of titin’s biophysical properties and how modifications contribute to cardiac function and heart failure. In addition, we review the most recent data on the clinical impact and phenotype heterogeneity of TTN truncating variants, including diseases involving striated muscles, and prospects for future therapies.

Summary

Because of the giant structure of the titin protein and the complexity of its function, titin’s role in health and disease is not yet completely understood. Future research efforts need to focus on novel therapeutic approaches able to modulate titin transcriptional and post-translational modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, et al. Heart disease and stroke statistics-2020 update: a report from the American Heart Association. Circulation. 2020;141(9):e139–596.

    Article  PubMed  Google Scholar 

  2. Zipes D; Braunwald E, Braunwald’s heart disease: a textbook of cardiovascular medicine. 7th ed.; 2005.

  3. Tharp CA, Haywood ME, Sbaizero O, Taylor MRG, Mestroni L. The giant protein titin’s role in cardiomyopathy: genetic, transcriptional, and post-translational modifications of TTN and their contribution to cardiac disease. Front Physiol. 2019;10:1436 Review of the most recent advances in understanding biophysical properties of TTN in health and disease.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Maruyama K, Kimura S, Yoshidomi H, Sawada H, Kikuchi M. Molecular size and shape of beta-connectin, an elastic protein of striated muscle. J Biochem. 1984;95(5):1423–33.

    Article  CAS  PubMed  Google Scholar 

  5. Tskhovrebova L, Trinick J. Roles of titin in the structure and elasticity of the sarcomere. J Biomed Biotechnol. 2010;2010:612482.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. LeWinter MM, Wu Y, Labeit S, Granzier H. Cardiac titin: structure, functions and role in disease. Clin Chim Acta. 2007;375(1-2):1–9.

    Article  CAS  PubMed  Google Scholar 

  7. LeWinter MM, Granzier HL. Titin is a major human disease gene. Circulation. 2013;127(8):938–44.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Trinick J. Titin as a scaffold and spring. Cytoskeleton Curr Biol. 1996;6(3):258–60.

    Article  CAS  PubMed  Google Scholar 

  9. Tskhovrebova L, Trinick J. Role of titin in vertebrate striated muscle. Philos Trans R Soc Lond Ser B Biol Sci. 2002;357(1418):199–206.

    Article  CAS  Google Scholar 

  10. Labeit S, Kolmerer B, Linke WA. The giant protein titin. Emerging roles in physiology and pathophysiology. Circ Res. 1997;80(2):290–4.

    Article  CAS  PubMed  Google Scholar 

  11. Li H, Fernandez JM. Mechanical design of the first proximal Ig domain of human cardiac titin revealed by single molecule force spectroscopy. J Mol Biol. 2003;334(1):75–86.

    Article  CAS  PubMed  Google Scholar 

  12. Linke WA, Rudy DE, Centner T, Gautel M, Witt C, Labeit S, et al. I-band titin in cardiac muscle is a three-element molecular spring and is critical for maintaining thin filament structure. J Cell Biol. 1999;146(3):631–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Trombitás K, Greaser M, Labeit S, Jin JP, Kellermayer M, Helmes M, et al. Titin extensibility in situ: entropic elasticity of permanently folded and permanently unfolded molecular segments. J Cell Biol. 1998;140(4):853–9.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Li H, Linke WA, Oberhauser AF, Carrion-Vazquez M, Kerkvliet JG, Lu H, et al. Reverse engineering of the giant muscle protein titin. Nature. 2002;418(6901):998–1002.

    Article  CAS  PubMed  Google Scholar 

  15. Li H, Oberhauser AF, Redick SD, Carrion-Vazquez M, Erickson HP, Fernandez JM. Multiple conformations of PEVK proteins detected by single-molecule techniques. Proc Natl Acad Sci U S A. 2001;98(19):10682–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Watanabe K, Nair P, Labeit D, Kellermayer MS, Greaser M, Labeit S, et al. Molecular mechanics of cardiac titin’s PEVK and N2B spring elements. J Biol Chem. 2002;277(13):11549–58.

    Article  CAS  PubMed  Google Scholar 

  17. Marszalek PE, Lu H, Li H, Carrion-Vazquez M, Oberhauser AF, Schulten K, et al. Mechanical unfolding intermediates in titin modules. Nature. 1999;402(6757):100–3.

    Article  CAS  PubMed  Google Scholar 

  18. Linke WA, Ivemeyer M, Olivieri N, Kolmerer B, Rüegg JC, Labeit S. Towards a molecular understanding of the elasticity of titin. J Mol Biol. 1996;261(1):62–71.

    Article  CAS  PubMed  Google Scholar 

  19. Freundt JK, Linke WA. Titin as a force-generating muscle protein under regulatory control. J Appl Physiol (1985). 2019;126(5):1474–82.

    Article  CAS  Google Scholar 

  20. Linke WA, Stockmeier MR, Ivemeyer M, Hosser H, Mundel P. Characterizing titin’s I-band Ig domain region as an entropic spring. J Cell Sci. 1998;111(Pt 11):1567–74.

    Article  CAS  PubMed  Google Scholar 

  21. Linke WA, Ivemeyer M, Mundel P, Stockmeier MR, Kolmerer B. Nature of PEVK-titin elasticity in skeletal muscle. Proc Natl Acad Sci U S A. 1998;95(14):8052–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fukuda N, Granzier HL. Titin/connectin-based modulation of the Frank-Starling mechanism of the heart. J Muscle Res Cell Motil. 2005;26(6-8):319–23.

    Article  CAS  PubMed  Google Scholar 

  23. Tharp C, Mestroni L, Taylor M. Modifications of titin contribute to the progression of cardiomyopathy and represent a therapeutic target for treatment of heart failure. J Clin Med. 2020, 9(9):2770 Updated review of the advances in therapeutic development in TTN cardiomyopathy.

  24. LeWinter MM, Granzier H. Cardiac titin: a multifunctional giant. Circulation. 2010;121(19):2137–45.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Guo W, Bharmal SJ, Esbona K, Greaser ML. Titin diversity--alternative splicing gone wild. J Biomed Biotechnol. 2010;2010:753675.

    Article  PubMed  PubMed Central  Google Scholar 

  26. LeWinter MM, Granzier HL. Cardiac titin and heart disease. J Cardiovasc Pharmacol. 2014;63(3):207–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nagueh SF, Shah G, Wu Y, Torre-Amione G, King NM, Lahmers S, et al. Altered titin expression, myocardial stiffness, and left ventricular function in patients with dilated cardiomyopathy. Circulation. 2004;110(2):155–62.

    Article  CAS  PubMed  Google Scholar 

  28. Guo W, Schafer S, Greaser ML, Radke MH, Liss M, Govindarajan T, et al. RBM20, a gene for hereditary cardiomyopathy, regulates titin splicing. Nat Med. 2012;18(5):766–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Brauch KM, Karst ML, Herron KJ, de Andrade M, Pellikka PA, Rodeheffer RJ, et al. Mutations in ribonucleic acid binding protein gene cause familial dilated cardiomyopathy. J Am Coll Cardiol. 2009;54(10):930–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Perkin J, Slater R, Del Favero G, Lanzicher T, Hidalgo C, Anderson B, et al. Phosphorylating titin’s cardiac N2B element by ERK2 or CaMKIIdelta lowers the single molecule and cardiac muscle force. Biophys J. 2015;109(12):2592–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rain S, Bos Dda S, Handoko ML, Westerhof N, Stienen G, Ottenheijm C, et al. Protein changes contributing to right ventricular cardiomyocyte diastolic dysfunction in pulmonary arterial hypertension. J Am Heart Assoc. 2014;3(3):e000716.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Kotter S, Gout L, Von Frieling-Salewsky M, Muller AE, Helling S, Marcus K, et al. Differential changes in titin domain phosphorylation increase myofilament stiffness in failing human hearts. Cardiovasc Res. 2013;99(4):648–56.

    Article  PubMed  CAS  Google Scholar 

  33. Hamdani N, Herwig M, Linke WA. Tampering with springs: phosphorylation of titin affecting the mechanical function of cardiomyocytes. Biophys Rev. 2017;9(3):225–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lanzicher T, Zhou T, Saripalli C, Keschrumrus V, Smith Iii JE, Mayans O, et al. Single-molecule force spectroscopy on the N2A element of titin: effects of phosphorylation and CARP. Front Physiol. 2020;11:173 Recent study showing the complexity of TTN mechanics and the importance of phosphorylation and binding molecules in affecting TTN rigidity, relevant for future therapeutics developments.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hopf AE, Andresen C, Kotter S, Isic M, Ulrich K, Sahin S, et al. Diabetes-induced cardiomyocyte passive stiffening is caused by impaired insulin-dependent titin modification and can be modulated by neuregulin-1. Circ Res. 2018;123(3):342–55.

    Article  CAS  PubMed  Google Scholar 

  36. Vikhorev PG, Vikhoreva NN, Yeung W, Li A, Lal S, Dos Remedios CG, et al. Titin-truncating mutations associated with dilated cardiomyopathy alter length-dependent activation and its modulation via phosphorylation. Cardiovasc Res. 2020:cvaa316.

  37. Gigli M, Begay RL, Morea G, Graw SL, Sinagra G, Taylor MR, et al. A review of the giant protein titin in clinical molecular diagnostics of cardiomyopathies. Front Cardiovasc Med. 2016;3:21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. McNally EM, Mestroni L. Dilated cardiomyopathy: genetic determinants and mechanisms. Circ Res. 2017;121(7):731–48 Comprehensive review of the pathogenetic mechanisms, genetics, and management of DCM.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Herman DS, Lam L, Taylor MR, Wang L, Teekakirikul P, Christodoulou D, et al. Truncations of titin causing dilated cardiomyopathy. N Engl J Med. 2012;366(7):619–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ware JS, Li J, Mazaika E, Yasso CM, DeSouza T, Cappola TP, et al. Shared genetic predisposition in peripartum and dilated cardiomyopathies. N Engl J Med. 2016;374(3):233–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tabish AM, Azzimato V, Alexiadis A, Buyandelger B, Knoll R. Genetic epidemiology of titin-truncating variants in the etiology of dilated cardiomyopathy. Biophys Rev. 2017;9(3):207–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ware JS, Amor-Salamanca A, Tayal U, Govind R, Serrano I, Salazar-Mendiguchia J, et al. Genetic etiology for alcohol-induced cardiac toxicity. J Am Coll Cardiol. 2018;71(20):2293–302 Large population survey showing an association between genetic predisposition, in particular TTNtv, and risk of cardiac damage due to alcohol intake.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Garcia-Pavia P, Kim Y, Restrepo-Cordoba MA, Lunde IG, Wakimoto H, Smith AM, et al. Genetic variants associated with cancer therapy-induced cardiomyopathy. Circulation. 2019;140(1):31–41 Large population survey suggesting that genetic factors, in particular TTN truncating variant, modify the risk of developing anthracycline cardiomyopathy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Akhtar MM, Lorenzini M, Cicerchia M, Ochoa JP, Hey TM, Sabater Molina M, et al. Clinical phenotypes and prognosis of dilated cardiomyopathy caused by truncating variants in the TTN gene. Circ Heart Fail. 2020;13(10):e006832 Recent multicenter study looking at the prognostic factors of TTNtv DCM at the population level: the study showed that LV dysfunction and male gender may worsen the outcome of TTNtv carriers.

    Article  CAS  PubMed  Google Scholar 

  45. Roberts AM, Ware JS, Herman DS, Schafer S, Baksi J, Bick AG, et al. Integrated allelic, transcriptional, and phenomic dissection of the cardiac effects of titin truncations in health and disease. Sci Transl Med. 2015;7(270):270ra6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Savarese M, Sarparanta J, Vihola A, Udd B, Hackman P. Increasing role of titin mutations in neuromuscular disorders. J Neuromuscul Dis. 2016;3(3):293–308.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zheng W, Chen H, Deng X, Yuan L, Yang Y, Song Z, et al. Identification of a novel mutation in the titin gene in a Chinese family with limb-girdle muscular dystrophy 2J. Mol Neurobiol. 2016;53(8):5097–102.

    Article  CAS  PubMed  Google Scholar 

  48. Hackman P; Savarese M; Carmignac V; Udd B; Salih MA, Myopathy S. In GeneReviews((R)), Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJ H. Mirzaa G, Amemiya A, Eds. Seattle (WA), 1993.

  49. Hershberger RE, Givertz MM, Ho CY, Judge DP, Kantor PF, McBride KL, et al. Genetic evaluation of cardiomyopathy-a Heart Failure Society of America practice guideline. J Card Fail. 2018;24(5):281–302.

    Article  PubMed  Google Scholar 

  50. Hershberger RE, Givertz MM, Ho CY, Judge DP, Kantor PF, McBride KL, et al. Genetic evaluation of cardiomyopathy: a clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2018;20(9):899–909.

    Article  PubMed  Google Scholar 

  51. Bozkurt B, Colvin M, Cook J, Cooper LT, Deswal A, Fonarow GC, et al. Current diagnostic and treatment strategies for specific dilated cardiomyopathies: a scientific statement from the American Heart Association. Circulation. 2016;134(23):e579–646.

    Article  PubMed  Google Scholar 

  52. Syed YY. Eteplirsen: first global approval. Drugs. 2016;76(17):1699–704.

    Article  CAS  PubMed  Google Scholar 

  53. Geary RS, Baker BF, Crooke ST. Clinical and preclinical pharmacokinetics and pharmacodynamics of mipomersen (kynamro((R))): a second-generation antisense oligonucleotide inhibitor of apolipoprotein B. Clin Pharmacokinet. 2015;54(2):133–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wood MJA, Talbot K, Bowerman M. Spinal muscular atrophy: antisense oligonucleotide therapy opens the door to an integrated therapeutic landscape. Hum Mol Genet. 2017;26(R2):R151–9.

    Article  CAS  PubMed  Google Scholar 

  55. Scoles DR, Minikel EV, Pulst SM. Antisense oligonucleotides: a primer. Neurol Genet. 2019;5(2):e323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhu C, Yin Z, Ren J, McCormick RJ, Ford SP, Guo W. RBM20 is an essential factor for thyroid hormone-regulated titin isoform transition. J Mol Cell Biol. 2015;7(1):88–90.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Liss M, Radke MH, Eckhard J, Neuenschwander M, Dauksaite V, von Kries JP, et al. Drug discovery with an RBM20 dependent titin splice reporter identifies cardenolides as lead structures to improve cardiac filling. PLoS One. 2018;13(6):e0198492.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Eisenberg T, Abdellatif M, Schroeder S, Primessnig U, Stekovic S, Pendl T, et al. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat Med. 2016;22(12):1428–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nishiga M, Qi LS, Wu JC. Therapeutic genome editing in cardiovascular diseases. Adv Drug Deliv Rev. 2021;168:147–57.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Supported by the NIH R01HL69071, HL116906, HL147064, NCATS Colorado CTSA/UL1 TR002535 and UL1 TR001082 (LM), NIH 1K23HI067915, NIH 2UM1HG006542 and R01HL109209 (MRGT), NHLBI T32HL007822 (CT), MIUR PRIN - 20173ZW (OS) and in part by a Trans-Atlantic Network of Excellence grant from the Fondation Leducq 14-CVD03 (LM, MRGT, OS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luisa Mestroni.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Myocardial Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eldemire, R., Tharp, C.A., Taylor, M.R. et al. The Sarcomeric Spring Protein Titin: Biophysical Properties, Molecular Mechanisms, and Genetic Mutations Associated with Heart Failure and Cardiomyopathy. Curr Cardiol Rep 23, 121 (2021). https://doi.org/10.1007/s11886-021-01550-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11886-021-01550-y

Keywords

Navigation