Skip to main content
Log in

The Lotus Valve System: an In-depth Review of the Technology

  • New Therapies for Cardiovascular Disease (AA Bavry, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Innovation for transcatheter aortic valve replacement (TAVR) has transformed a medically complex treatment into a standardized procedure. While Edwards SAPIEN and Medtronic CoreValve occupy the market for TAVR in the United States (US), additional valve systems are being developed. The Boston Scientific Lotus Valve system was recently FDA-approved and will represent the third valve in the US market. This evidence-based review will summarize advantages, disadvantages, and projected impact of this new TAVR system.

Recent Findings

The Lotus Valve system demonstrates superiority in terms of rates of paravalvular leak, with similar rates of mortality and disabling stroke. This benefit is at the expense of increased pacemaker implantation rates, though preliminary data from subsequent iterations of the Lotus Valve suggest decreasing rates over time.

Summary

There is much anticipation from ongoing trials utilizing the Lotus Edge system, which may perform best for those with pre-existing pacemakers or anatomy that increases likelihood of paravalvular leak.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. •• Mack MJ, Leon MB, Thourani VH, Makkar R, Kodali SK, Russo M, et al. Transcatheter aortic-valve replacement with a balloon-expandable valve in low-risk patients. N Engl J Med. 2019;380(18):1695–705. https://doi.org/10.1056/NEJMoa1814052 Findings from this study show safety and efficacy for TAVR (specifically SAPIEN) in low-risk patients, further expanding the role for TAVR across the spectrum of anticipated risk and supporting an expansive market for the utilization of TAVR in the future.

    Article  PubMed  Google Scholar 

  2. Popma JJ, Deeb GM, Yakubov SJ, Mumtaz M, Gada H, O’Hair D, et al. Transcatheter aortic-valve replacement with a self-expanding valve in low-risk patients. N Engl J Med. 2019;380(18):1706–15. https://doi.org/10.1056/NEJMoa1816885.

    Article  PubMed  Google Scholar 

  3. Leon MB, Smith CR, Mack MJ, Makkar RR, Svensson LG, Kodali SK, et al. Transcatheter or surgical aortic-valve replacement in intermediate-risk patients. N Engl J Med. 2016;374(17):1609–20.

    Article  CAS  PubMed  Google Scholar 

  4. Reardon MJ, Van Mieghem NM, Popma JJ, Kleiman NS, Søndergaard L, Mumtaz M, et al. Surgical or transcatheter aortic-valve replacement in intermediate-risk patients. N Engl J Med. 2017;376(14):1321–31.

    Article  PubMed  Google Scholar 

  5. Smith CR, Leon MB, Mack MJ, Miller DC, Moses JW, Svensson LG, et al. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N Engl J Med. 2011;364(23):2187–98.

    Article  CAS  PubMed  Google Scholar 

  6. Adams DH, Popma JJ, Reardon MJ, Yakubov SJ, Coselli JS, Deeb GM, et al. Transcatheter aortic-valve replacement with a self-expanding prosthesis. N Engl J Med. 2014;370(19):1790–8.

    Article  CAS  PubMed  Google Scholar 

  7. Makkar RR, Fontana GP, Jilaihawi H, Kapadia S, Pichard AD, Douglas PS, et al. Transcatheter aortic-valve replacement for inoperable severe aortic stenosis. N Engl J Med. 2012;366(18):1696–704.

    Article  CAS  PubMed  Google Scholar 

  8. Popma JJ, Adams DH, Reardon MJ, Yakubov SJ, Kleiman NS, Heimansohn D, et al. Transcatheter aortic valve replacement using a self-expanding bioprosthesis in patients with severe aortic stenosis at extreme risk for surgery. J Am Coll Cardiol. 2014;63(19):1972–81.

    Article  PubMed  Google Scholar 

  9. Kapadia SR, Leon MB, Makkar RR, Tuzcu EM, Svensson LG, Kodali S, et al. 5-year outcomes of transcatheter aortic valve replacement compared with standard treatment for patients with inoperable aortic stenosis (PARTNER 1): a randomised controlled trial. Lancet. 2015;385(9986):2485–91.

    Article  PubMed  Google Scholar 

  10. Mack MJ, Leon MB, Smith CR, Miller DC, Moses JW, Tuzcu EM, et al. 5-year outcomes of transcatheter aortic valve replacement or surgical aortic valve replacement for high surgical risk patients with aortic stenosis (PARTNER 1): a randomised controlled trial. Lancet. 2015;385(9986):2477–84.

    Article  PubMed  Google Scholar 

  11. Todaro D, Picci A, Barbanti M. Current TAVR devices—technical characteristics and evidence to date for FDA-and CE mark-approved valves. Cardiac Interv Today. 2017;11:6.

    Google Scholar 

  12. Eggebrecht H, Vaquerizo B, Moris C, Bossone E, Lämmer J, Czerny M, et al. Incidence and outcomes of emergent cardiac surgery during transfemoral transcatheter aortic valve implantation (TAVI): insights from the E uropean R egistry on E mergent C ardiac S urgery during TAVI (EuRECS-TAVI). Eur Heart J. 2017;39(8):676–84.

    Article  Google Scholar 

  13. “Boston Scientific Receives FDA Approval for LOTUS Edge™ Aortic Valve System.” Boston Scientific, 2019. news.bostonscientific.com/2019-04-23-Boston-Scientific-Receives-FDA-Approval-for-LOTUS-Edge-TM-Aortic-Valve-System. Accessed 24 July 2019

  14. Meredith IT, Hood KL, Haratani N, Allocco DJ, Dawkins KD. Boston Scientific Lotus valve. EuroIntervention. 2012;8:Q70–4.

    Article  PubMed  Google Scholar 

  15. Meredith IT, Walters DL, Dumonteil N, Worthley SG, Tchétché D, Manoharan G, et al. Transcatheter aortic valve replacement for severe symptomatic aortic stenosis using a repositionable valve system: 30-day primary endpoint results from the REPRISE II study. J Am Coll Cardiol. 2014;64(13):1339–48.

    Article  Google Scholar 

  16. Holmes DR, Brennan JM, Rumsfeld JS, Dai D, O’brien SM, Vemulapalli S, et al. Clinical outcomes at 1 year following transcatheter aortic valve replacement. Jama. 2015;313(10):1019–28.

    Article  CAS  PubMed  Google Scholar 

  17. Rashid HN, Gooley R, McCormick L, Zaman S, Ramkumar S, Jackson D, et al. Safety and efficacy of valve repositioning during transcatheter aortic valve replacement with the Lotus Valve System. J Cardiol. 2017;70(1):55–61.

    Article  PubMed  Google Scholar 

  18. Maeno Y, Abramowitz Y, Kawamori H, Kazuno Y, Kubo S, Takahashi N, et al. A highly predictive risk model for pacemaker implantation after TAVR. JACC Cardiovasc Imaging. 2017;10(10 Part A):1139–47.

    Article  PubMed  Google Scholar 

  19. Wolff R, Radhakrishnan S, Mitsuhashi H, Zavodni A, Roifman I, Sparkes JD, et al. CoreValve prosthesis depth: what is the optimal measurement target? J Heart Valve Dis. 2016;25(4):417–23.

    PubMed  Google Scholar 

  20. Del Val FR, Carreras E, Kolkailah A, Chowdhury R, McGurk S, Lee J, et al. The incidence of permanent pacemaker implantation with SAPIEN 3 heart valve–implantation depth: the higher the better? J Am Coll Cardiol. 2017;69(11 Supplement):1313.

    Article  Google Scholar 

  21. Nazif TM, Dizon JM, Hahn RT, Xu K, Babaliaros V, Douglas PS, et al. Predictors and clinical outcomes of permanent pacemaker implantation after transcatheter aortic valve replacement: the PARTNER (Placement of AoRtic TraNscathetER Valves) trial and registry. J Am Coll Cardiol Intv. 2015;8(1 Part A):60–9.

    Article  Google Scholar 

  22. Rocatello G, El Faquir N, Segers P, Mortier P, de Jaegere P. TCT-785 Low implantation depth during TAVR increases the pressure exerted on the atrioventricular conduction system: a biomechanical analysis. J Am Coll Cardiol. 2017;70(18 Supplement):B267–8.

    Article  Google Scholar 

  23. Weber M, Sinning JM, Hammerstingl C, Werner N, Grube E, Nickenig G. Permanent pacemaker implantation after TAVR–predictors and impact on outcomes. Interv Cardiol Rev. 2015;10(2):98.

    Article  Google Scholar 

  24. Dumonteil N, Meredith I, Blackman D, Tchetche D, Hildick-Smith D, Spence MS, et al. Need for permanent pacemaker following implantation of the repositionable Lotus™ valve for the transcatheter aortic valve replacement in 250 patients: results from the REPRISE II trial extended cohort. J Am Coll Cardiol. 2015;65(10 Supplement):A1705.

    Article  Google Scholar 

  25. Transcatheter aortic valve replacement using the Lotus valve with depth guard: first report from the RESPOND extension study. Presented at CRT 2017, Washington, DC, February 20, 2017.

  26. Feldman T. “Lotus Valve: expanding treatment options in real-world practice” Presented at EuroPCR 2017, 17 May 2017, Palais des Congrès, Paris, France.

  27. Meredith IT, Worthley SG, Whitbourn RJ, Antonis P, Montarello JK, Newcomb AE, et al. Transfemoral aortic valve replacement with the repositionable Lotus Valve System in high surgical risk patients: the REPRISE I study. EuroIntervention. 2014;9(11):1264–70.

    Article  PubMed  Google Scholar 

  28. Gooley R, Worthley SG, Whitbourn R, Montarello J, Newcomb A, Allocco D, et al. TCT-776 final results from the REPRISE I study: five-year clinical outcomes with the repositionable and fully retrievable Lotus Valve System. J Am Coll Cardiol. 2017;70(18 Supplement):B264.

    Article  Google Scholar 

  29. Dumonteil N, Walters D, Worthley SG, Tchetche D, Manoharan G, Blackman D, et al. TCT-14 final 5-year outcomes of the REPRISE II study: long-term outcomes with the fully repositionable and retrievable Lotus transcatheter aortic valve. J Am Coll Cardiol. 2018;72(13 Supplement):B6.

    Article  Google Scholar 

  30. Dumonteil N, Meredith IT, Blackman DJ, Tchétché D, Hildick-Smith D, Spence MS, et al. Insights into the need for permanent pacemaker following implantation of the repositionable LOTUS valve for the transcatheter aortic valve replacement in 250 patients: results from the REPRISE II trial with extended cohort. EuroIntervention. 2017;13(7):796–803.

    Article  PubMed  Google Scholar 

  31. Gooley RP, Talman AH, Cameron JD, Lockwood SM, Meredith IT. Comparison of self-expanding and mechanically expanded transcatheter aortic valve prostheses. J Am Coll Cardiol Intv. 2015;8(7):962–71.

    Article  Google Scholar 

  32. Wöhrle J, Rodewald C, Rottbauer W. Transfemoral aortic valve implantation in pure native aortic valve insufficiency using the repositionable and retrievable lotus valve. Catheter Cardiovasc Interv. 2016;87(5):993–5.

    Article  PubMed  Google Scholar 

  33. De Backer O, Götberg M, Ihlberg L, Packer E, Savontaus M, Nielsen NE, et al. Efficacy and safety of the Lotus Valve System for treatment of patients with severe aortic valve stenosis and intermediate surgical risk: results from the Nordic Lotus-TAVR registry. Int J Cardiol. 2016;219:92–7.

    Article  PubMed  Google Scholar 

  34. Pilgrim T, Stortecky S, Nietlispach F, Heg D, Tueller D, Toggweiler S, et al. Repositionable versus balloon-expandable devices for transcatheter aortic valve implantation in patients with aortic stenosis. J Am Heart Assoc. 2016;5(11):e004088.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Rampat R, Khawaja MZ, Hilling-Smith R, Byrne J, MacCarthy P, Blackman DJ, et al. Conduction abnormalities and permanent pacemaker implantation after transcatheter aortic valve replacement using the repositionable LOTUS device: the United Kingdom experience. J Am Coll Cardiol Intv. 2017;10(12):1247–53.

    Article  Google Scholar 

  36. Falk V, Wöhrle J, Hildick-Smith D, Bleiziffer S, Blackman DJ, Abdel-Wahab M, et al. Safety and efficacy of a repositionable and fully retrievable aortic valve used in routine clinical practice: the RESPOND Study. Eur Heart J. 2017;38(45):3359–66.

    Article  PubMed  Google Scholar 

  37. Gilard M, Eltchaninoff H, Iung B, Donzeau-Gouge P, Chevreul K, Fajadet J, et al. Registry of transcatheter aortic-valve implantation in high-risk patients. N Engl J Med. 2012;366(18):1705–15.

    Article  CAS  PubMed  Google Scholar 

  38. Linke A, Holzhey D, Möllmann H, Manoharan G, Schäfer U, Frerker C, et al. Treatment of aortic stenosis with a self-expanding, resheathable transcatheter valve: one-year results of the international multicenter portico transcatheter aortic valve implantation system study. Circ Cardiovasc Interv. 2018;11(2):e005206.

    Article  PubMed  Google Scholar 

  39. Webb J, Gerosa G, Lefèvre T, Leipsic J, Spence M, Thomas M, et al. Multicenter evaluation of a next-generation balloon-expandable transcatheter aortic valve. J Am Coll Cardiol. 2014;64(21):2235–43.

    Article  PubMed  Google Scholar 

  40. •• Feldman TE, Reardon MJ, Rajagopal V, Makkar RR, Bajwa TK, Kleiman NS, et al. Effect of mechanically expanded vs self-expanding transcatheter aortic valve replacement on mortality and major adverse clinical events in high-risk patients with aortic stenosis: the REPRISE III randomized clinical trial. JAMA. 2018;319(1):27–37 This study represents the first comparison study between TAVR systems, demonstrating equivalent safety and efficacy for the Lotus system in comparison to CoreValve, with lower rates of paravalvular leak and higher rates of permanent pacemaker placement.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Pellegrini C, Hengstenberg C, Husser O. The Lotus dilemma—respond to paravalvular leakage, but not answering pacemaker implantations? J Thorac Dis. 2017;9(9):2804.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Walters D, Gooley R, Raffel OC, McCormick LM, Cornaille A, Allocco DJ, et al. First report of clinical outcomes with the next-generation Lotus Edge Valve System: results from the Lotus Edge Feasibility Trial. J Am Coll Cardiol. 2017;69(11 Supplement):1285.

    Article  Google Scholar 

  43. Gotberg M et al. “One-year outcomes with the transcatheter LOTUS Edge aortic valve system” Presented at PCR London Valves, London England, September 11, 2018.

  44. “Global $12.2 Bn Transcatheter Aortic Valve Replacement/Implantation (TAVR/TAVI) Market to 2025.” PR Newswire: Press Release Distribution, Targeting, Monitoring and Marketing, 20 Aug. 2018. www.prnewswire.com/news-releases/global-12-2-bn-transcatheter-aortic-valve-replacementimplantation-tavrtavi-market-to-2025%2D%2D300699322.html. Accessed 24 July 2019

  45. Wilczek K, Bujak K, Reguła R, Chodór P, Osadnik T. Risk factors for paravalvular leak after transcatheter aortic valve implantation. Kardiochir Torakochirurgia Pol. 2015;12(2):89.

    PubMed  PubMed Central  Google Scholar 

  46. Chamandi C, Barbanti M, Munoz-Garcia A, Latib A, Nombela-Franco L, Gutiérrez-Ibanez E, et al. Long-term outcomes in patients with new permanent pacemaker implantation following transcatheter aortic valve replacement. J Am Coll Cardiol Intv. 2018;11(3):301–10.

    Article  Google Scholar 

  47. Mylotte D, Lefevre T, Søndergaard L, Watanabe Y, Modine T, Dvir D, et al. Transcatheter aortic valve replacement in bicuspid aortic valve disease. J Am Coll Cardiol. 2014;64(22):2330–9.

    Article  PubMed  Google Scholar 

  48. Bavaria JE, Tommaso CL, Brindis RG, Carroll JD, Michael Deeb G, Feldman TE, et al. 2018 AATS/ACC/SCAI/STS expert consensus systems of care document: Operator and institutional recommendations and requirements for transcatheter aortic valve replacement: a Joint Report of the American Association for Thoracic Surgery, American College of Cardiology, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. Catheter Cardiovasc Interv. 2019;93(3):E153–84.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saif Anwaruddin.

Ethics declarations

Conflict of Interest

Matthew E. Seigerman and Ashwin Nathan declare that they have no conflict of interest.

Saif Anwaruddin reports the following: Consultant/Speaker/Advisory Board: Medtronic; Consultant/Speaker/Proctor: Edwards; and DSMB: Cardiovascular Research Foundation.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on New Therapies for Cardiovascular Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seigerman, M.E., Nathan, A. & Anwaruddin, S. The Lotus Valve System: an In-depth Review of the Technology. Curr Cardiol Rep 21, 157 (2019). https://doi.org/10.1007/s11886-019-1234-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-019-1234-5

Keywords

Navigation