Skip to main content

Advertisement

Log in

Left Ventricular Dysfunction and Chemotherapeutic Agents

  • Heart Failure (H Eisen, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

We aim to summarize the effect of cancer therapy-related cardiotoxicity on the development of left ventricular (LV) dysfunction.

Recent Findings

We discuss commonly used cancer therapeutics that have the potential for both acute and delayed cardiotoxicity. LV dysfunction from cancer therapies may be found by routine cardiac imaging prior to clinical manifestations of heart failure (HF) and we discuss the current multi-modality approaches for early detection of toxicity with the use of advanced echocardiographic parameters including strain techniques. Further, we discuss the role of biomarkers for detection of LV dysfunction from cancer therapies. Current approaches monitoring and treating LV dysfunction related to cancer therapy-related cardiotoxicity include addressing modifiable cardiovascular risk factors especially hypertension and early initiation of neurohormonal blockade (NHB) with disease-modifying beta-blockers and renin–angiotensin–aldosterone system (RAAS) inhibitors. Once LV dysfunction is identified, traditional ACC/AHA guideline-directed therapy is employed. Further, we highlight the use of advanced heart failure therapies including mechanical resynchronization devices, the use of durable ventricular assist devices, and cardiac transplantation as increasingly employed modalities for treatment of severe LV dysfunction and advanced heart failure in the cardio-oncology population.

Summary

This review seeks to highlight the importance of early detection, treatment, and prevention of LV dysfunction from cancer therapy-related cardiotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ACC:

American College of Cardiology

ACEi:

angiotensin-converting enzyme inhibitors

AHA:

American Heart Association

ARB:

angiotensin receptor blockers

BB:

beta-blockers

cMRI:

cardiac magnetic resonance imaging

CVD:

cardiovascular disease

CVRF:

cardiovascular risk factors

GLS:

global longitudinal strain

HF:

heart failure

INTERMACS:

Interagency Registry for Mechanically Assisted Circulatory Support

LV:

left ventricle

LVEF:

left ventricular ejection fraction

NHB:

neurohormonal blockade

MUGA:

multiple-gated acquisition

RAAS:

renin–angiotensin–aldosterone system

TKI:

tyrosine kinase inhibitors

Tn:

troponin

Tn I:

troponin I

Tn T:

troponin T

UNOS:

United Network for Organ Sharing

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Miller KD, Siegel RL, Lin CC, Mariotto AB, Kramer JL, Rowland JH, et al. Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin. 2016;66(4):271–89.

    Article  PubMed  Google Scholar 

  2. Carver JR, Shapiro CL, Ng A, Jacobs L, Schwartz C, Virgo KS, et al. American Society of Clinical Oncology clinical evidence review on the ongoing care of adult cancer survivors: cardiac and pulmonary late effects. J Clin Oncol. 2007;25(25):3991–4008.

    Article  CAS  PubMed  Google Scholar 

  3. Armenian SH, Xu L, Ky B, Sun C, Farol LT, Pal SK, et al. Cardiovascular disease among survivors of adult-onset cancer: a community-based retrospective cohort study. J Clin Oncol. 2016;34(10):1122–30.

    Article  CAS  PubMed  Google Scholar 

  4. Bloom MW, Hamo CE, Cardinale D, Ky B, Nohria A, Baer L, et al. Cancer therapy-related cardiac dysfunction and heart failure: part 1: definitions, pathophysiology, risk factors, and imaging. Circ Heart Fail. 2016;9(1):e002661.

    Article  PubMed  PubMed Central  Google Scholar 

  5. • Plana JC, Galderisi M, Barac A, Ewer MS, Ky B, Scherrer-Crosbie M, et al. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2014;15(10):1063–93. This article provides an overarching view of imaging in the cardio-oncologic population.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Von Hoff DD, Layard MW, Basa P, Davis HL Jr, Von Hoff AL, Rozencweig M, et al. Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med. 1979;91(5):710–7.

    Article  Google Scholar 

  7. Swain SM, Whaley FS, Ewer MS. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer. 2003;97(11):2869–79.

    Article  CAS  PubMed  Google Scholar 

  8. Armenian SH, Lacchetti C, Barac A, Carver J, Constine LS, Denduluri N, et al. Prevention and monitoring of cardiac dysfunction in survivors of adult cancers: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol. 2017;35(8):893–911.

    Article  PubMed  Google Scholar 

  9. Yeh ET, Bickford CL. Cardiovascular complications of cancer therapy: incidence, pathogenesis, diagnosis, and management. J Am Coll Cardiol. 2009;53(24):2231–47.

    Article  CAS  PubMed  Google Scholar 

  10. Yeh ET, Tong AT, Lenihan DJ, Yusuf SW, Swafford J, Champion C, et al. Cardiovascular complications of cancer therapy: diagnosis, pathogenesis, and management. Circulation. 2004;109(25):3122–31.

    Article  PubMed  Google Scholar 

  11. Langer SW. Dexrazoxane for the treatment of chemotherapy-related side effects. Cancer Manag Res. 2014;6:357–63.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Curigliano G, Cardinale D, Suter T, Plataniotis G, de Azambuja E, Sandri MT, et al. Cardiovascular toxicity induced by chemotherapy, targeted agents and radiotherapy: ESMO Clinical Practice Guidelines. Ann Oncol. 2012;23(Suppl 7):vii155–66.

    Article  PubMed  Google Scholar 

  13. Thavendiranathan P, Poulin F, Lim KD, Plana JC, Woo A, Marwick TH. Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy: a systematic review. J Am Coll Cardiol. 2014;63(25 Pt A):2751–68.

    Article  PubMed  Google Scholar 

  14. Amsterdam EA, Wenger NK, Brindis RG, Casey DE Jr, Ganiats TG, Holmes DR Jr, et al. 2014 AHA/ACC guideline for the management of patients with non-ST-elevation acute coronary syndromes: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;130(25):2354–94.

    Article  PubMed  Google Scholar 

  15. Ky B, Putt M, Sawaya H, French B, Januzzi JL Jr, Sebag IA, et al. Early increases in multiple biomarkers predict subsequent cardiotoxicity in patients with breast cancer treated with doxorubicin, taxanes, and trastuzumab. J Am Coll Cardiol. 2014;63(8):809–16.

    Article  CAS  PubMed  Google Scholar 

  16. Juan Carlos Plana TLF, José Juan Gómez de Diego, y Miguel Ángel García Fernández. Cardio Oncology. 1st ed: CTO Editorial; 2014.

  17. Cardinale D, Sandri MT, Colombo A, Colombo N, Boeri M, Lamantia G, et al. Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation. 2004;109(22):2749–54.

    Article  CAS  PubMed  Google Scholar 

  18. Cardinale D, Sandri MT, Martinoni A, Borghini E, Civelli M, Lamantia G, et al. Myocardial injury revealed by plasma troponin I in breast cancer treated with high-dose chemotherapy. Ann Oncol. 2002;13(5):710–5.

    Article  CAS  PubMed  Google Scholar 

  19. Cardinale D, Sandri MT, Martinoni A, Tricca A, Civelli M, Lamantia G, et al. Left ventricular dysfunction predicted by early troponin I release after high-dose chemotherapy. J Am Coll Cardiol. 2000;36(2):517–22.

    Article  CAS  PubMed  Google Scholar 

  20. Sandri MT, Cardinale D, Zorzino L, Passerini R, Lentati P, Martinoni A, et al. Minor increases in plasma troponin I predict decreased left ventricular ejection fraction after high-dose chemotherapy. Clin Chem. 2003;49(2):248–52.

    Article  CAS  PubMed  Google Scholar 

  21. Auner HW, Tinchon C, Linkesch W, Tiran A, Quehenberger F, Link H, et al. Prolonged monitoring of troponin T for the detection of anthracycline cardiotoxicity in adults with hematological malignancies. Ann Hematol. 2003;82(4):218–22.

    CAS  PubMed  Google Scholar 

  22. Sawaya H, Sebag IA, Plana JC, Januzzi JL, Ky B, Tan TC, et al. Assessment of echocardiography and biomarkers for the extended prediction of cardiotoxicity in patients treated with anthracyclines, taxanes, and trastuzumab. Circ Cardiovasc Imaging. 2012;5(5):596–603.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Morris PG, Chen C, Steingart R, Fleisher M, Lin N, Moy B, et al. Troponin I and C-reactive protein are commonly detected in patients with breast cancer treated with dose-dense chemotherapy incorporating trastuzumab and lapatinib. Clin Cancer Res. 2011;17(10):3490–9.

    Article  CAS  PubMed  Google Scholar 

  24. Schmidinger M, Zielinski CC, Vogl UM, Bojic A, Bojic M, Schukro C, et al. Cardiac toxicity of sunitinib and sorafenib in patients with metastatic renal cell carcinoma. J Clin Oncol. 2008;26(32):5204–12.

    Article  PubMed  Google Scholar 

  25. Hall PS, Harshman LC, Srinivas S, Witteles RM. The frequency and severity of cardiovascular toxicity from targeted therapy in advanced renal cell carcinoma patients. JACC Heart Fail. 2013;1(1):72–8.

    Article  PubMed  Google Scholar 

  26. Writing Committee M, Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation. 2013;128(16):e240–327.

    Article  Google Scholar 

  27. Albini A, Pennesi G, Donatelli F, Cammarota R, De Flora S, Noonan DM. Cardiotoxicity of anticancer drugs: the need for cardio-oncology and cardio-oncological prevention. J Natl Cancer Inst. 2010;102(1):14–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Anju N. Prevention of cardiomyopathy in patients with cancer American College of Cardiology - Cardio-Oncology. 2016. [cited 2017 July 1]. Available from: http://www.acc.org/latest-in-cardiology/articles/2016/09/29/13/25/prevention-of-cardiomyopathy-in-patients-with-cancer.

  29. Xing M, Yan F, Yu S, Shen P. Efficacy and cardiotoxicity of liposomal doxorubicin-based chemotherapy in advanced breast cancer: a meta-analysis of ten randomized controlled trials. PLoS One. 2015;10(7):e0133569.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Injectables P. Zinecard® (dexrazoxane for injection). 2012. [Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/020212s013lbl.pdf.

  31. FDA. FDA Statement on Dexrazoxane. 2011. [Available from: https://www.fda.gov/Drugs/DrugSafety/ucm263729.htm.

  32. Tebbi CK, London WB, Friedman D, Villaluna D, De Alarcon PA, Constine LS, et al. Dexrazoxane-associated risk for acute myeloid leukemia/myelodysplastic syndrome and other secondary malignancies in pediatric Hodgkin’s disease. J Clin Oncol. 2007;25(5):493–500.

    Article  CAS  PubMed  Google Scholar 

  33. Salzer WL, Devidas M, Carroll WL, Winick N, Pullen J, Hunger SP, et al. Long-term results of the pediatric oncology group studies for childhood acute lymphoblastic leukemia 1984-2001: a report from the children's oncology group. Leukemia. 2010;24(2):355–70.

    Article  CAS  PubMed  Google Scholar 

  34. Kalam K, Marwick TH. Role of cardioprotective therapy for prevention of cardiotoxicity with chemotherapy: a systematic review and meta-analysis. Eur J Cancer. 2013;49(13):2900–9.

    Article  CAS  PubMed  Google Scholar 

  35. Hamo CE, Bloom MW, Cardinale D, Ky B, Nohria A, Baer L, et al. Cancer therapy-related cardiac dysfunction and heart failure: part 2: prevention, treatment, guidelines, and future directions. Circ Heart Fail. 2016;9(2):e002843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gulati G, Heck SL, Ree AH, Hoffmann P, Schulz-Menger J, Fagerland MW, et al. Prevention of cardiac dysfunction during adjuvant breast cancer therapy (PRADA): a 2 x 2 factorial, randomized, placebo-controlled, double-blind clinical trial of candesartan and metoprolol. Eur Heart J. 2016;37(21):1671–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kalay N, Basar E, Ozdogru I, Er O, Cetinkaya Y, Dogan A, et al. Protective effects of carvedilol against anthracycline-induced cardiomyopathy. J Am Coll Cardiol. 2006;48(11):2258–62.

    Article  CAS  PubMed  Google Scholar 

  38. Nakamae H, Tsumura K, Terada Y, Nakane T, Nakamae M, Ohta K, et al. Notable effects of angiotensin II receptor blocker, valsartan, on acute cardiotoxic changes after standard chemotherapy with cyclophosphamide, doxorubicin, vincristine, and prednisolone. Cancer. 2005;104(11):2492–8.

    Article  CAS  PubMed  Google Scholar 

  39. Cadeddu C, Piras A, Mantovani G, Deidda M, Dessi M, Madeddu C, et al. Protective effects of the angiotensin II receptor blocker telmisartan on epirubicin-induced inflammation, oxidative stress, and early ventricular impairment. Am Heart J. 2010;160(3):487 e1–7.

    Article  Google Scholar 

  40. Bosch X, Rovira M, Sitges M, Domenech A, Ortiz-Perez JT, de Caralt TM, et al. Enalapril and carvedilol for preventing chemotherapy-induced left ventricular systolic dysfunction in patients with malignant hemopathies: the OVERCOME trial (preventiOn of left Ventricular dysfunction with Enalapril and caRvedilol in patients submitted to intensive ChemOtherapy for the treatment of Malignant hEmopathies). J Am Coll Cardiol. 2013;61(23):2355–62.

    Article  CAS  PubMed  Google Scholar 

  41. Cardinale D, Colombo A, Lamantia G, Colombo N, Civelli M, De Giacomi G, et al. Anthracycline-induced cardiomyopathy: clinical relevance and response to pharmacologic therapy. J Am Coll Cardiol. 2010;55(3):213–20.

    Article  CAS  PubMed  Google Scholar 

  42. • Cardinale D, Colombo A, Bacchiani G, Tedeschi I, Meroni CA, Veglia F, et al. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation. 2015;131(22):1981–8. This article is one of the seminal works in cardio-oncology which emphasizes the use of neurohormonal blockade in the treatment and ideal prevention of LV dysfunction.

    Article  CAS  PubMed  Google Scholar 

  43. Cardinale D, Colombo A, Sandri MT, Lamantia G, Colombo N, Civelli M, et al. Prevention of high-dose chemotherapy-induced cardiotoxicity in high-risk patients by angiotensin-converting enzyme inhibition. Circulation. 2006;114(23):2474–81.

    Article  CAS  PubMed  Google Scholar 

  44. Rickard J, Kumbhani DJ, Baranowski B, Martin DO, Tang WH, Wilkoff BL. Usefulness of cardiac resynchronization therapy in patients with Adriamycin-induced cardiomyopathy. Am J Cardiol. 2010;105(4):522–6.

    Article  CAS  PubMed  Google Scholar 

  45. Oliveira GH, Hardaway BW, Kucheryavaya AY, Stehlik J, Edwards LB, Taylor DO. Characteristics and survival of patients with chemotherapy-induced cardiomyopathy undergoing heart transplantation. J Heart Lung Transplant. 2012;31(8):805–10.

    Article  PubMed  Google Scholar 

  46. Oliveira GH, Dupont M, Naftel D, Myers SL, Yuan Y, Tang WH, et al. Increased need for right ventricular support in patients with chemotherapy-induced cardiomyopathy undergoing mechanical circulatory support: outcomes from the INTERMACS Registry (Interagency Registry for Mechanically Assisted Circulatory Support). J Am Coll Cardiol. 2014;63(3):240–8.

    Article  PubMed  Google Scholar 

  47. • Al-Kindi SG. OG. Advanced HF therapies in cancer survivors treated with anthracyclines and radiation American College of Cardiology - Cardio-Oncology 2017 [updated July 1 2017; cited 2017 July 1]. Available from: http://www.acc.org/latest-in-cardiology/articles/2017/05/18/08/27/advanced-hf-therapies-in-cancer-survivors-treated-with-anthracyclines-and-radiation?w_nav=LC. This online reference discusses the latest advanced heart failure therapies in patients with advanced LV dysfunction.

  48. Oliveira GH, Qattan MY, Al-Kindi S, Park SJ. Advanced heart failure therapies for patients with chemotherapy-induced cardiomyopathy. Circ Heart Fail. 2014;7(6):1050–8.

    Article  PubMed  Google Scholar 

Download references

Funding

Suparna C. Clasen reports grants from NIH T32 funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suparna C. Clasen.

Ethics declarations

Conflict of Interest

Suparna C. Clasen and Joyce W. Wald declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Heart Failure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clasen, S.C., Wald, J.W. Left Ventricular Dysfunction and Chemotherapeutic Agents. Curr Cardiol Rep 20, 20 (2018). https://doi.org/10.1007/s11886-018-0967-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-018-0967-x

Keywords

Navigation