Percutaneous Mechanical Circulatory Support Devices for High-Risk Percutaneous Coronary Intervention

Ischemic Heart Disease (D Mukherjee, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Ischemic Heart Disease


Purpose of Review

Percutaneous mechanical circulatory support devices (PMCSD) consist of the intra-aortic balloon pump (IABP), Impella (Abiomed Inc., Danvers, Massachusetts), Tandem Heart (Cardiac Assist, Inc., Pittsburgh, Pennsylvania), or extracorporeal membranous oxygenation (ECMO). They augment cardiac output, cardiac index, and cardiac power which allow the operator to mitigate hemodynamic perturbations during high-risk percutaneous coronary intervention (HR-PCI). This review discusses PMCSD and their contemporary literature.

Recent Findings

Recent literature has substantiated the hemodynamic benefits of PMCSD in HR-PCI and cardiogenic shock, but no mortality benefit was found.


As stent technology improves, PCI is expanding into high-risk cases in which PMCSD provide hemodynamic support allowing safe and complete revascularization.


Stent Mechanical circulatory support device Intra-aortic balloon pump Impella Cardiogenic shock 


Compliance with Ethical Standards

Conflict of Interest

Subrata Kar declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    •• Rihal C, Naidu S, Givertz M, Szeto W, Burke J, Kapur N, et al. Scai/Acc/Hfsa/Sts clinical expert consensus statement on the use of percutaneous mechanical circulatory support devices in cardiovascular care: endorsed by the American Heart Assocation, the Cardiological Society of India, and Sociedad Latino Americana De Cardiologia Intervencion; affirmation of value by the Canadian Association Of Interventional Cardiology-Association Canadienne De Cardiologie D'intervention. J Am Coll Cardiol. 2015;65(19):E7–E26. This article provides an expert consensus statement on the use of percutaneous mechanical circulatory support devices. Scholar
  2. 2.
    Myat A, Patel N, Tehrani S, Banning AP, Redwood SR, DL B. Percutaneous circulatory assist devices for high-risk coronary intervention. Jacc Cardiovasc Interv. 2015;8(2):229–44. Scholar
  3. 3.
    American College Of Emergency P, Society For Cardiovascular A, Interventions, O’gara P, Kushner F, Ascheim D, Casey D Jr, Chung M, et al. Accf/Aha guideline for the management of St-elevation myocardial infarction: a report of the American College Of Cardiology Foundation/American Heart Association task force on practice guidelines. J Am Coll Cardiol. 2013;61:E78–140.Google Scholar
  4. 4.
    Mishra S. Upscaling cardiac assist devices in decompensated heart failure: choice of device and its timing. Indian Heart J. 2016;68(Suppl 1):S1–4. Scholar
  5. 5.
    Cheng J, Den Uil C, Hoeks S, Van Der Ent M, Jewbali L, Van Domburg R, et al. Percutaneous left ventricular assist devices vs. intra-aortic balloon pump counterpulsation for treatment of cardiogenic shock: a meta-analysis of controlled trials. Eur Heart J. 2009;30(17):2102–8. Scholar
  6. 6.
    Jones H, Kalisetti D, Gaba M, Mccormick D, Goldberg S. Left ventricular assist for high-risk percutaneous coronary intervention. J Invasive Cardiol. 2012;24(10):544–50.PubMedGoogle Scholar
  7. 7.
    Meraj P, Doshi R, Schreiber T, Maini B, O'neill W. Impella 2.5 initiated prior to unprotected left main Pci in acute myocardial infarction complicated by cardiogenic shock improves early survival. J Interv Cardiol. 2017;30(3):256–63. Scholar
  8. 8.
    Goldstein J, Kern M. Percutaneous mechanical support for the failing right heart. Cardiol Clin. 2012;30(2):303–10. Scholar
  9. 9.
    Anderson M, Goldstein J, Milano C, Morris L, Kormos R, Bhama J, et al. Benefits of a novel percutaneous ventricular assist device for right heart failure: the prospective recover right study of the Impella Rp device. J Heart Lung Transplant. 2015;34(12):1549–60. Scholar
  10. 10.
    Cheung A, White C, Davis M, Freed D. Short-term mechanical circulatory support for recovery from acute right ventricular failure: clinical outcomes. J Heart Lung Transplant. 2014;33(8):794–9. Scholar
  11. 11.
    Tomasello S, Boukhris M, Ganyukov V, Galassi A, Shukevich D, Haes B, et al. Outcome of extracorporeal membrane oxygenation support for complex high-risk elective percutaneous coronary interventions: a single-center experience. Heart Lung. 2015;44(4):309–13. Scholar
  12. 12.
    Perera D, Stables R, Thomas M, Booth J, Pitt M, Blackman D, et al. Elective intra-aortic balloon counterpulsation during high-risk percutaneous coronary intervention: a randomized controlled trial. JAMA. 2010;304(8):867–74. Scholar
  13. 13.
    Perera D, Stables R, Clayton T, De Silva K, Lumley M, Clack L, et al. Long-term mortality data from the balloon pump-assisted coronary intervention study (Bcis-1): a randomized, controlled trial of elective balloon counterpulsation during high-risk percutaneous coronary intervention. Circulation. 2013;127(2):207–12. Scholar
  14. 14.
    Thiele H, Zeymer U, Neumann F, Ferenc M, Olbrich H, Hausleiter J, et al. Intra-aortic balloon counterpulsation in acute myocardial infarction complicated by cardiogenic shock (Iabp-shock ii): final 12 month results of a randomised, open-label trial. Lancet. 2013;382(9905):1638–45. Scholar
  15. 15.
    O'neill W, Kleiman N, Moses J, Henriques J, Dixon S, Massaro J, et al. A prospective, randomized clinical trial of hemodynamic support with Impella 2.5 versus intra-aortic balloon pump in patients undergoing high-risk percutaneous coronary intervention: the Protect ii study. Circulation. 2012;126(14):1717–27. Scholar
  16. 16.
    Kovacic J, Kini A, Banerjee S, Dangas G, Massaro J, Mehran R, et al. Patients with 3-vessel coronary artery disease and impaired ventricular function undergoing Pci with Impella 2.5 hemodynamic support have improved 90-day outcomes compared to intra-aortic balloon pump: a sub-study of the protect Ii trial. J Interv Cardiol. 2015;28(1):32–40. Scholar
  17. 17.
    Seyfarth M, Sibbing D, Bauer I, Frohlich G, Bott-Flugel L, Byrne R, et al. A randomized clinical trial to evaluate the safety and efficacy of a percutaneous left ventricular assist device versus intra-aortic balloon pumping for treatment of cardiogenic shock caused by myocardial infarction. J Am Coll Cardiol. 2008;52(19):1584–8. Scholar
  18. 18.
    • Ouweneel D, Eriksen E, Sjauw K, Van Dongen I, Hirsch A, Packer E, et al. Percutaneous mechanical circulatory support versus intra-aortic balloon pump in cardiogenic shock after acute myocardial infarction. J Am Coll Cardiol. 2017;69(3):278–287. This study provides contemporary evidence for the use of Impella Vs. Iabp In cardiogenic shock after an acute myocardial infarction. Scholar
  19. 19.
    Thiele H, Sick P, Boudriot E, Diederich K, Hambrecht R, Niebauer J, et al. Randomized comparison of intra-aortic balloon support with a percutaneous left ventricular assist device in patients with revascularized acute myocardial infarction complicated by cardiogenic shock. Eur Heart J. 2005;26(13):1276–83. Scholar
  20. 20.
    Dixon S, Henriques J, Mauri L, Sjauw K, Civitello A, Kar B, et al. A prospective feasibility trial investigating the use of the Impella 2.5 system in patients undergoing high-risk percutaneous coronary intervention (the Protect I trial): initial U.S. experience. Jacc Cardiovasc Interv. 2009;2(2):91–6. Scholar
  21. 21.
    Guenther S, Theiss H, Fischer M, Sattler S, Peterss S, Born F, et al. Percutaneous extracorporeal life support for patients in therapy refractory cardiogenic shock: initial results of an interdisciplinary team. Interact Cardiovasc Thorac Surg. 2014;18(3):283–91. Scholar
  22. 22.
    Lee J, Park J, Kang J, Jeon K, Jung J, Lee S, et al. The efficacy and safety of mechanical hemodynamic support in patients undergoing high-risk percutaneous coronary intervention with or without cardiogenic shock: Bayesian approach network meta-analysis of 13 randomized controlled trials. Int J Cardiol. 2015;184:36–46. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018
corrected publication February/2018

Authors and Affiliations

  1. 1.Division of Cardiovascular MedicineTexas Tech University Health Sciences Center at El Paso, Paul L. Foster School of MedicineEl PasoUSA

Personalised recommendations