Skip to main content

Advertisement

Log in

The Vascular Wall: a Plastic Hub of Activity in Cardiovascular Homeostasis and Disease

  • Regenerative Medicine (SM Wu, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review aims to summarize recent findings regarding the plasticity and fate switching among somatic and progenitor cells residing in the vascular wall of blood vessels in health and disease.

Recent Findings

Cell lineage tracing methods have identified multiple origins of stem cells, macrophages, and matrix-producing cells that become mobilized after acute or chronic injury of cardiovascular tissues. These studies also revealed that in the disease environment, resident somatic cells become plastic, thereby changing their stereotypical identities to adopt proinflammatory and profibrotic phenotypes.

Summary

Currently, the functional significance of this heterogeneity among reparative cells is unknown. Furthermore, mechanisms that control cellular plasticity and fate decisions in the disease environment are poorly understood. Cardiovascular diseases are responsible for the majority of deaths worldwide. From a therapeutic perspective, these novel discoveries may identify new targets to improve the repair and regeneration of the cardiovascular system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Boudoulas KD, Hatzopoulos AK. Cardiac repair and regeneration: the Rubik’s cube of cell therapy for heart disease. Dis Model Mech. 2009;2:344–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Swirski FK, Robbins CS, Nahrendorf M. Development and function of arterial and cardiac macrophages. Trends Immunol. 2016;37:2–40.

    Article  Google Scholar 

  3. Santini MP, Forte E, Harvey RP, Kovacic JC. Developmental origin and lineage plasticity of endogenous cardiac stem cells. Development. 2016;143:1242–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nieto MA, Huang RY, Jackson RA, Thiery JP. EMT: 2016. Cell. 2016;166:21–45.

    Article  CAS  PubMed  Google Scholar 

  5. Rios FJ, Harvey A, Lopes RA, Montezano AC, Touyz RM. Progenitor cells, bone marrow-derived fibrocytes and endothelial-to-nesenchymal transition: new players in vascular fibrosis. Hypertension. 2016;67:272–4.

    CAS  PubMed  Google Scholar 

  6. Kovacic JC, Mercader N, Torres M, Boehm M, Fuster V. Epithelial-to-mesenchymal and endothelial-to-mesenchymal transition: from cardiovascular development to disease. Circulation. 2012;125:1795–808.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kretzschmar K, Watt FM. Lineage tracing. Cell. 2012;148:33–45.

    Article  CAS  PubMed  Google Scholar 

  8. Rulands S, Simons BD. Tracing cellular dynamics in tissue development, maintenance and disease. Curr Opin Cell Biol. 2016;43:38–45.

    Article  CAS  PubMed  Google Scholar 

  9. Sauer B, Henderson N. Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc Natl Acad Sci U S A. 1988;85:5166–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gustafsson E, Brakebusch C, Hietanen K, Fassler R. 2001. Tie-1-directed expression of Cre recombinase in endothelial cells of embryoid bodies and transgenic mice. J Cell Sci. 2001;114:671–6.

    CAS  PubMed  Google Scholar 

  11. Sohal DS, Nghiem M, Crackower MA, Witt SA, Kimball TR, Tymitz KM, Penninger JM, Molkentin JD. Temporally regulated and tissue-specific gene manipulations in the adult and embryonic heart using a tamoxifen-inducible Cre protein. Circ Res. 2001;89:20–5.

    Article  CAS  PubMed  Google Scholar 

  12. Soriano P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet. 1991;21:70–1.

    Article  Google Scholar 

  13. Srinivas S, Watanabe T, Lin CS, William CM, Tanabe Y, Jessell TM, Costantini F. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol. 2001;1:4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Feil R, Brocard J, Mascrez B, LeMeur M, Metzger D, Chambon P. Ligand-activated site-specific recombination in mice. Proc Natl Acad Sci U S A. 1996;93:10887–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Verrou C, Zhang Y, Zürn C, Schamel WW, Reth M. Comparison of the tamoxifen regulated chimeric Cre recombinases MerCreMer and CreMer. Biol Chem. 1999;380:1435–8.

    Article  CAS  PubMed  Google Scholar 

  16. Snippert HJ, van der Flier LG, Sato T, van Es JH, van den Born M, Kroon-Veenboer C, Barker N, Klein AM, van Rheenen J, Simons BD, Clevers H. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell. 2010;143:134–44.

    Article  CAS  PubMed  Google Scholar 

  17. Rinkevich Y, Lindau P, Ueno H, Longaker MT, Weissman IL. Germ-layer and lineage-restricted stem/progenitors regenerate the mouse digit tip. Nature. 2011;476:409–13.

    Article  CAS  PubMed  Google Scholar 

  18. Tabansky I, Lenarcic A, Draft RW, Loulier K, Keskin DB, Rosains J, Rivera-Feliciano J, Lichtman JW, Livet J, Stern JN, Sanes JR, Eggan K. Developmental bias in cleavage-stage mouse blastomeres. Curr Biol. 2013;23:21–31.

    Article  CAS  PubMed  Google Scholar 

  19. • Fioret BA, Heimfeld JD, Paik DT, Hatzopoulos AK. Endothelial cells contribute to generation of adult ventricular myocytes during cardiac homeostasis. Cell Rep. 2014;2014(8):229–41. Using lineage tracing, the authors identified endothelial cells as a source of cardiomyocytes, smooth muscle cells, and Sca1 + cells in the adventiatia of coronary arteries.

  20. de Bruijn MF, Ma X, Robin C, Ottersbach K, Sanchez MJ, Dzierzak E. Hematopoietic stem cells localize to the endothelial cell layer in the midgestation mouse aorta. Immunity. 2002;16:673–83.

    Article  PubMed  Google Scholar 

  21. Zovein AC, Hofmann JJ, Lynch M, French WJ, Turlo KA, Yang Y, Becker MS, Zanetta L, Dejana E, Gasson JC, Tallquist MD, Iruela-Arispe ML. Fate tracing reveals the endothelial origin of hematopoietic stem cells. Cell Stem Cell. 2008;3:625–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bertrand JY, Chi NC, Santoso B, Teng S, Stainier DY, Traver D. Haematopoietic stem cells derive directly from aortic endothelium during development. Nature. 2010;464:108–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Boisset JC, van Cappellen W, Andrieu-Soler C, Galjart N, Dzierzak E, Robin C. In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. Nature. 2010;464:116–20.

    Article  CAS  PubMed  Google Scholar 

  24. Kissa K, Herbomel P. Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature. 2010;464:112–5.

    Article  CAS  PubMed  Google Scholar 

  25. Ivanovs A, Rybtsov S, Welch L, Anderson RA, Turner ML, Medvinsky A. Highly potent human hematopoietic stem cells first emerge in the intraembryonic aorta-gonad-mesonephros region. J Exp Med. 2011;208:2417–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Choi KD, Vodyanik MA, Togarrati PP, Suknuntha K, Kumar A, Samarjeet F, Probasco MD, Tian S, Stewart R, Thomson JA, Slukvin II. Identification of the hemogenic endothelial progenitor and its direct precursor in human pluripotent stem cell differentiation cultures. Cell Rep. 2012;2:553–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Markwald RR, Fitzharris TP, Manasek FJ. Structural development of endocardial cushions. Am J Anat. 1977;148:85–119.

    Article  CAS  PubMed  Google Scholar 

  28. Kisanuki YY, Hammer RE, Miyazaki J, Williams SC, Richardson JA, Yanagisawa M. Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo. Dev Biol. 2001;230:230–42.

    Article  CAS  PubMed  Google Scholar 

  29. Medici D. Endothelial-mesenchymal transition in regenerative medicine. Stem Cells Int. 2016;2016:6962801. doi:10.1155/2016/6962801.

    PubMed  PubMed Central  Google Scholar 

  30. Pérez L, Muñoz-Durango N, Riedel CA, Echeverría C, Kalergis AM, Cabello-Verrugio C, Simon F. Endothelial-to-mesenchymal transition: cytokine-mediated pathways that determine endothelial fibrosis under inflammatory conditions. Cytokine Growth Factor Rev. 2016; doi:10.1016/j.cytogfr.2016.09.002.

    PubMed  Google Scholar 

  31. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15:178–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, Portillo F, Nieto MA. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol. 2000;2:76–83.

    Article  CAS  PubMed  Google Scholar 

  33. Diez M, Musri MM, Ferrer E, Barbera JA. PeinadoVI. Endothelial progenitor cells undergo an endothelial-to-mesenchymal transition-like process mediated by TGFbetaRI. Cardiovasc Res. 2010;88:502–11.

    Article  CAS  PubMed  Google Scholar 

  34. Medici D, Shore EM, Lounev VY, Kaplan FS, Kalluri R, Olsen BR. Conversion of vascular endothelial cells into multipotent stem-like cells. Nat Med. 2010;16:1400–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kokudo T, Suzuki Y, Yoshimatsu Y, Yamazaki T, Watabe T, Miyazono K. Snail is required for TGFβ-induced endothelial-mesenchymal transition of embryonic stem cell-derived endothelial cells. J Cell Sci. 2008;121:3317–24.

    Article  CAS  PubMed  Google Scholar 

  36. Niessen K, Fu Y, Chang L, Hoodless PA, McFadden D, Karsan A. Slug is a direct Notch target required for initiation of cardiac cushion cellularization. J Cell Biol. 2008;182:315–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Luna-Zurita L, Prados B, Grego-Bessa J, Luxan G, del Monte G, Benguria A, Adams RH, Perez-Pomares JM, de la Pompa JL. Integration of a Notch-dependent mesenchymal gene program and Bmp2-driven cell invasiveness regulates murine cardiac valve formation. J Clin Invest. 2010;120:3493–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. • Aisagbonhi O, Rai M, Ryzhov S, Atria N, Feoktistov I, Hatzopoulos AK. Experimental myocardial infarction triggers canonical Wnt signaling and endothelial-to-mesenchymal transition. Dis Model Mech. 2011;4:469–83. This paper was the first to show canonical Wnt singaling induction and the significant contribution of EndMT in cardiac fibrosis after acute ischemic injury.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cheng SL, Shao JS, Behrmann A, Krchma K, Towler DA. Dkk1 and MSX2-Wnt7b signaling reciprocally regulate the endothelial-mesenchymal transition in aortic endothelial cells. Arterioscler Thromb Vasc Biol. 2013;33:1679–89.

    Article  CAS  PubMed  Google Scholar 

  40. Piera-Velazquez S, Li Z, Jimenez SA. Role of endothelial-mesencymal transition (EndoMT) in the pathogenesis of fibrotic disorders. Am J Pathol. 2011;179:1074–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hashimoto N, Phan SH, Imaizumi K, Matsuo M, Nakashima H, Kawabe T, Shimokata K, Hasegawa Y. Endothelial-mesenchymal transition in bleomycin-induced pulmonary fibrosis. Am J Respir Cell Mol Biol. 2010;43:161–72.

    Article  CAS  PubMed  Google Scholar 

  42. Ranchoux B, Antigny F, Rucker-Martin C, Hautefort A, Péchoux C, Bogaard HJ, Dorfmüller P, Remy S, Lecerf F, Planté S, Chat S, Fadel E, Houssaini A, Anegon I, Adnot S, Simonneau G, Humbert M, Cohen-Kaminsky S, Perros F. Endothelial-to-mesenchymal transition in pulmonary hypertension. Circulation. 2015;131:1006–18.

    Article  CAS  PubMed  Google Scholar 

  43. Good RB, Gilbane AJ, Trinder SL, Denton CP, Coghlan G, Abraham DJ, Holmes AM. Endothelial to mesenchymal transition contributes to endothelial dysfunction in pulmonary arterial hypertension. Am J Pathol. 2015;185:1850–8.

    Article  CAS  PubMed  Google Scholar 

  44. Hopper RK, Moonen JR, Diebold I, Cao A, Rhodes CJ, Tojais NF, Hennigs JK, Gu M, Wang L, Rabinovitch M. In pulmonary arterial hypertension, reduced BMPR2 promotes endothelial-to-mesenchymal transition via HMGA1 and its target Slug. Circulation. 2016;133:1783–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zeisberg EM, Potenta SE, Sugimoto H, Zeisberg M, Kalluri R. Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J Am Soc Nephrol. 2008;19:2282–7.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Li J, Qu X, Yao J, Caruana G, Ricardo SD, Yamamoto Y, Yamamoto H, Bertram JF. Blockade of endothelial-mesenchymal transition by a Smad3 inhibitor delays the early development of streptozotocin-induced diabetic nephropathy. Diabetes. 2010;59:2612–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xavier S, Vasko R, Matsumoto K, Zullo JA, Chen R, Maizel J, Chander PN, Goligorsky MS. Curtailing endothelial TGF-β signaling is sufficient to reduce endothelial-mesenchymal transition and fibrosis in CKD. J Am Soc Nephrol. 2015;26:817–29.

    Article  CAS  PubMed  Google Scholar 

  48. •• Zeisberg EM, Tarnavski O, Zeisberg M, Dorfman AL, McMullen JR, Gustafsson E, Chandraker A, Yuan X, Pu WT, Roberts AB, Neilson EG, Sayegh MH, Izumo S, Kalluri R. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med. 2007;2007(13):952–61. This landmark paper first discovered the impact of EndMT in cardiac fibrosis and its inhibition by BMP7.

    Article  Google Scholar 

  49. Widyantoro B, Emoto N, Nakayama K, Anggrahini DW, Adiarto S, Iwasa N, Yagi K, Miyagawa K, Rikitake Y, Suzuki T, Kisanuki YY, Yanagisawa M, Hirata K. Endothelial cell-derived endothelin-1 promotes cardiac fibrosis in diabetic hearts through stimulation of endothelial-to-mesenchymal transition. Circulation. 2010;121:2407–18.

    Article  CAS  PubMed  Google Scholar 

  50. Ghosh AK, Bradham WS, Gleaves LA, De Taeye B, Murphy SB, Covington JW, Vaughan DE. Genetic deficiency of plasminogen activator inhibitor-1 promotes cardiac fibrosis in aged mice: involvement of constitutive transforming growth factor-beta signaling and endothelial-to-mesenchymal transition. Circulation. 2010;122:1200–9.

    Article  CAS  PubMed  Google Scholar 

  51. Rieder F, Kessler SP, West GA, Bhilocha S, de la Motte C, Sadler TM, Gopalan B, Stylianou E, Fiocchi C. Inflammation-induced endothelial-to-mesenchymal transition: a novel mechanism of intestinal fibrosis. Am J Pathol. 2011;179:2660–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. • Wu J, Montaniel KR, Saleh MA, Xiao L, Chen W, Owens GK, Humphrey JD, Majesky MW, Paik DT, Hatzopoulos AK, Madhur MS, Harrison DG. Origin of matrix-producing cells that contribute to aortic fibrosis in hypertension. Hypertension. 2016;67:461–8. This paper first identified EndMT, adventitial Sca1 + progenitor cells, resident fibroblasts, and bone marrow-recruited fibrocytes as diverse sources of collagen-producing cells in the aortic wall of hypertensive mice.

  53. • Chen PY, Qin L, Baeyens N, Li G, Afolabi T, Budatha M, Tellides G, Schwartz MA, Simons M. Endothelial-to-mesenchymal transition drives atherosclerosis progression. J Clin Invest. 2015;125:4514–28. Here, the authors described the contribution of EndMT in atherosclerotic legions and the role of FGF and TGFβ signaling in EndMT induction.

    Article  PubMed  PubMed Central  Google Scholar 

  54. • Evrard SM, Lecce L, Michelis KC, Nomura-Kitabayashi A, Pandey G, Purushothaman KR, d'Escamard V, Li JR, Hadri L, Fujitani K, Moreno PR, Benard L, Rimmele P, Cohain A, Mecham B, Randolph GJ, Nabel EG, Hajjar R, Fuster V, Boehm M, Kovacic JC. Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability. Nat Commun. 2016;7:11853. doi:10.1038/ncomms11853. Here, the authors tracked EndMT in mouse and human atherosclerotic lesions and showed its association with plaque instability.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. • Chen PY, Qin L, Barnes C, Charisse K, Yi T, Zhang X, Ali R, Medina PP, Yu J, Slack FJ, Anderson DG, Kotelianski V, Wang F, Tellides G, Simons M. FGF regulates TGF-β signaling and endothelial-to-mesenchymal transition via control of let-7 miRNA expression. Cell Rep. 2012;2:1684–96. The authors identified let-7 miRNA as a key upstream regulator of EndMT.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cooley BC, Nevado J, Mellad J, Yang D, St Hilaire C, Negro A, Fang F, Chen G, San H, Walts AD, Schwartzbeck RL, Taylor B, Lanzer JD, Wragg A, Elagha A, Beltran LE, Berry C, Feil R, Virmani R, Ladich E, Kovacic JC, Boehm M. TGF-β signaling mediates endothelial-to-mesenchymal transition (EndMT) during vein graft remodeling. Sci Transl Med. 2014;6:227ra34. doi:10.1126/scitranslmed.3006927.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Yao J, Guihard PJ, Blazquez-Medela AM, Guo Y, Moon JH, Jumabay M, Boström KI, Yao Y. Serine protease activation essential for endothelial-mesenchymal transition in vascular calcification. Circ Res. 2015;117:758–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cao Y, Feng B, Chen S, Chu Y, Chakrabarti S. Mechanisms of endothelial to mesenchymal transition in the retina in diabetes. Invest Ophthalmol Vis Sci. 2014;55:7321–31.

    Article  CAS  PubMed  Google Scholar 

  59. Shapero K, Wylie-Sears J, Levine RA, Mayer Jr JE, Bischoff J. Reciprocal interactions between mitral valve endothelial and interstitial cells reduce endothelial-to-mesenchymal transition and myofibroblastic activation. J Mol Cell Cardiol. 2015;80:175–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zeisberg EM, Potenta S, Xie L, Zeisberg M, Kalluri R. Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res. 2007;67:10123–8.

    Article  CAS  PubMed  Google Scholar 

  61. • Moore-Morris T, Guimarães-Camboa N, Banerjee I, Zambon AC, Kisseleva T, Velayoudon A, Stallcup WB, Gu Y, Dalton ND, Cedenilla M, Gomez-Amaro R, Zhou B, Brenner DA, Peterson KL, Chen J, Evans SM. Resident fibroblast lineages mediate pressure overload-induced cardiac fibrosis. J Clin Invest. 2014;124:2921–34. Applying a pressure overload model, this manuscript shows that most myofibroblasts are generated by proliferation and activation of resident fibroblasts with minor EndMT contribution.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. • Kanisicak O, Khalil H, Ivey MJ, Karch JMBD, Correll RN, Brody MJ, Lin SC J, Aronow BJ, Tallquist MD, Molkentin JD. Genetic lineage tracing defines myofibroblast origin and function in the injured heart. Nat Commun. 2016;7:12260. doi:10.1038/ncomms12260. The authors use lineage tracing to identify resident Tcf21 cells as the main source of myofibroblasts after myocardial infarction.

    Article  CAS  PubMed  Google Scholar 

  63. Maddaluno L, Rudini N, Cuttano R, Bravi L, Giampietro C, Corada M, Ferrarini L, Orsenigo F, Papa E, Boulday G, Tournier-Lasserve E, Chapon F, Richichi C, Retta SF, Lampugnani MG, Dejana E. EndMT contributes to the onset and progression of cerebral cavernous malformations. Nature. 2013;498:492–6.

    Article  CAS  PubMed  Google Scholar 

  64. Medici D, Kalluri R. Endothelial-mesenchymal transition and its contribution to the emergence of stem cell phenotype. Semin Cancer Biol. 2012;22:379–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. • Uchida S, De Gaspari P, Kostin S, Jenniches K, Kilic A, Izumiya Y, Shiojima I, Grosse Kreymborg K, Renz H, Walsh K, Braun T. Sca1-derived cells are a source of myocardial renewal in the murine adult heart. Stem Cell Reports. 2013;1:397–410. The authors found that Sca1 cells differentiate into cardiomyocytes during homeostasis.

  66. Chen Q, Zhang H, Liu Y, Adams S, Eilken H, Stehling M, Corada M, Dejana E, Zhou B, Adams RH. Endothelial cells are progenitors of cardiac pericytes and vascular smooth muscle cells. Nat Commun. 2016;7:12422. doi:10.1038/ncomms12422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shoshani O, Zipori D. Transition of endothelium to cartilage and bone. Cell Stem Cell. 2011;8:10–1.

    Article  CAS  PubMed  Google Scholar 

  68. Tran KV, Gealekman O, Frontini A, Zingaretti MC, Morroni M, Giordano A, Smorlesi A, Perugini J, De Matteis R, Sbarbati A, Corvera S, Cinti S. The vascular endothelium of the adipose tissue gives rise to both white and brown fat cells. Cell Metab. 2012;15:222–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tang R, Gao M, Wu M, Liu H, Zhang X, Liu B. High glucose mediates endothelial-to-chondrocyte transition in human aortic endothelial cells. Cardiovasc Diabetol. 2012;11:11.

    Article  Google Scholar 

  70. Murdoch CE, Chaubey S, Zeng L, Yu B, Ivetic A, Walker SJ, Vanhoutte D, Heymans S, Grieve DJ, Cave AC, Brewer AC, Zhang M, Shah AM. Endothelial NADPH oxidase-2 promotes interstitial cardiac fibrosis and diastolic dysfunction through proinflammatory effects and endothelial-mesenchymal transition. J Am Coll Cardiol. 2014;63:2734–41.

    Article  CAS  PubMed  Google Scholar 

  71. Ambrozova G, Fidlerova T, Verescakova H, Koudelka A, Rudolph TK, Woodcock SR, Freeman BA, Kubala L, Pekarova M. Nitro-oleic acid inhibits vascular endothelial inflammatory responses and the endothelial-mesenchymal transition. Biochim Biophys Acta. 1860;2016:2428–37.

    Google Scholar 

  72. Moonen JR, Lee ES, Schmidt M, Maleszewska M, Koerts JA, Brouwer LA, van Kooten TG, van Luyn MJ, Zeebregts CJ, Krenning G, Harmsen MC. Endothelial-to-mesenchymal transition contributes to fibro-proliferative vascular disease and is modulated by fluid shear stress. Cardiovasc Res. 2015;108:377–86.

    Article  CAS  PubMed  Google Scholar 

  73. Medici D, Potenta S, Kalluri R. Transforming growth factor-2 promotes snail-mediated endothelial-mesenchymal transition through convergence of smad-dependent and smad-independent signaling. Biochem J. 2011;437:515–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mahler GJ, Farrar EJ, Butcher JT. Inflammatory cytokines promote mesenchymal transformation in embryonic and adult valve endothelial cells. Arterioscler Thromb Vasc Biol. 2013;33:121–30.

    Article  CAS  PubMed  Google Scholar 

  75. Maleszewska M, Moonen JR, Huijkman N, van de Sluis B, Krenning BG, Harmsen MC. IL-1 and TGF 2 synergistically induce endothelial to mesenchymal transition in an NFkB-dependent manner. Immunobiology. 2013;218:443–54.

    Article  CAS  PubMed  Google Scholar 

  76. Liebner S, Cattelino A, Gallini R, Rudini N, Iurlaro M, Piccolo S, Dejana E. Beta-catenin is required for endothelial-mesenchymal transformation during heart cushion development in the mouse. J Cell Biol. 2004;166:359–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. van Meeteren LA, ten Dijke P. Regulation of endothelial cell plasticity by TGF-β. Cell Tissue Res. 2012;347:177–86.

    Article  PubMed  Google Scholar 

  78. Chen PY, Qin L, Tellides G, Simons M. Fibroblast growth factor receptor 1 is a key inhibitor of TGFβ signaling in the endothelium. Sci Signal. 2014;23(7):ra90. doi:10.1126/scisignal.2005504.

    Article  Google Scholar 

  79. Yoshida T, Hayashi M. Role of Krüppel-like factor 4 and its binding proteins in vascular disease. J Atheroscler Thromb. 2014;21:402–13.

    Article  PubMed  Google Scholar 

  80. Cuttano R, Rudini N, Bravi L, Corada M, Giampietro C, Papa E, Morini MF, Maddaluno L, Baeyens N, Adams RH, Jain MK, Owens GK, Schwartz M, Lampugnani MG, Dejana E. KLF4 is a key determinant in the development and progression of cerebral cavernous malformations. EMBO Mol Med. 2015;8:6–24.

    Article  PubMed Central  Google Scholar 

  81. Zhou Z, Tang AT, Wong WY, Bamezai S, Goddard LM, Shenkar R, Zhou S, Yang J, Wright AC, Foley M, Arthur JS, Whitehead KJ, Awad IA, Li DY, Zheng X, Kahn ML. Cerebral cavernous malformations arise from endothelial gain of MEKK3-KLF2/4 signalling. Nature. 2016;532:122–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhao Y, Qiao X, Wang L, Tan TK, Zhao H, Zhang Y, Zhang J, Rao P, Cao Q, Wang Y, Wang Y, Wang YM, Lee VW, Alexander SI, Harris DC, Zheng G. Matrix metalloproteinase 9 induces endothelial-mesenchymal transition via Notch activation in human kidney glomerular endothelial cells. BMC Cell Biol. 2016;17:21. doi:10.1186/s12860-016-0101-0.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Correia AC, Moonen JR, Brinker MG, Krenning G. FGF2 inhibits endothelial-mesenchymal transition through microRNA-20a-mediated repression of canonical TGF-β signaling. J Cell Sci. 2016;129:569–79.

    Article  CAS  PubMed  Google Scholar 

  84. Feng B, Cao Y, Chen S, Chu X, Chu Y, Chakrabarti S. miR-200b mediates endothelial-to-mesenchymal transition in diabetic cardiomyopathy. Diabetes. 2016;65:768–79.

    Article  CAS  PubMed  Google Scholar 

  85. Sun Y, Cai J, Yu S, Chen S, Li F, Fan C. miR-630 inhibits endothelial-mesenchymal transition by targeting Slug in traumatic heterotopic ossification. Sci Rep. 2016;6:22729. doi:10.1038/srep22729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Piera-Velazquez S, Mendoza FA, Jimenez SA. Role of endothelial-mesenchymal transition (EndoMT) in the pathogenesis of human fibrotic diseases. J Clin Med. 2016:5. doi:10.3390/jcm5040045.

  87. Garcia J, Sandi MJ, Cordelier P, Binétruy B, Pouysségur J, Iovanna JL, Tournaire R. Tie1 deficiency induces endothelial–mesenchymal transition. EMBO Rep. 2012;13:431–9.

  88. Rong JX, Shapiro M, Trogan E, Fisher EA. Transdifferentiation of mouse aortic smooth muscle cells to a macrophage-like state after cholesterol loading. Proc Natl Acad Sci U S A. 2003;100:13531–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Allahverdian S, Chehroudi AC, McManus BM, Abraham T, Francis GA. Contribution of intimal smooth muscle cells to cholesterol accumulation and macrophage-like cells in human atherosclerosis. Circulation. 2014;129:1551–9.

    Article  CAS  PubMed  Google Scholar 

  90. Feil S, Fehrenbacher B, Lukowski R, Essmann F, Schulze-Osthoff K, Schaller M, Feil R. Transdifferentiation of vascular smooth muscle cells to macrophage-like cells during atherogenesis. Circ Res. 2014;115:662–7.

    Article  CAS  PubMed  Google Scholar 

  91. • Shankman LS, Gomez D, Cherepanova OA, Salmon M, Alencar GF, Haskins RM, Swiatlowska P, Newman AA, Greene ES, Straub AC, Isakson B, Randolph GJ, Owens GK. KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nat Med. 2015;21:628–37. This study identified Krüppel-like factor 4 as a key contributing factor to atherosclerotic lesion formation by promoting the transition of smooth muscle cells to macrophages and mesenchymal stem cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Albarrán-Juárez J, Kaur H, Grimm M, Offermanns S, Wettschureck N. Lineage tracing of cells involved in atherosclerosis. Atherosclerosis. 2016;251:445–53.

    Article  PubMed  Google Scholar 

  93. Chappell J, Harman JL, Narasimhan VM, Yu H, Foote K, Simons BD, Bennett MR, Jorgensen HF. Extensive proliferation of a subset of differentiated, yet plastic, medial vascular smooth muscle cells contribute to neointimal formation in mouse injury and atherosclerosis models. Circ Res. 2016;119:1313–23.

    Article  CAS  PubMed  Google Scholar 

  94. Chen PY, Qin L, Li G, Tellides G, Simons M. Fibroblast growth factor (FGF) signaling regulates transforming growth factor beta (TGFβ)-dependent smooth muscle cell phenotype modulation. Sci Rep. 2016;6:33407. doi:10.1038/srep33407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Psaltis PJ, Simari RD. Vascular wall progenitor cells in health and disease. Circ Res. 2015;116:1392–412.

    Article  CAS  PubMed  Google Scholar 

  96. Nurnberg ST, Cheng K, Raiesdana A, Kundu R, Miller CL, Kim JB, Arora K, Carcamo-Oribe I, Xiong Y, Tellakula N, Nanda V, Murthy N, Boisvert WA, Hedin U, Perisic L, Aldi S, Maegdefessel L, Pjanic M, Owens GK, Tallquist MD, Quertermous T. Coronary artery disease associated transcription factor TCF21 regulates smooth muscle precursor cells that contribute to the fibrous cap. PLoS Genet. 2015;11:e1005155. doi:10.1371/journal.pgen.1005155.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Hu Y, Zhang Z, Torsney E, Afzal AR, Davison F, Metzler B, Xu Q. Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE-deficient mice. J Clin Invest. 2004;113:1258–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Passman JN, Dong XR, Wu SP, Maguire CT, Hogan KA, Bautch VL, Majesky MW. A sonic hedgehog signaling domain in the arterial adventitia supports resident Sca1+ smooth muscle progenitor cells. Proc Natl Acad Sci U S A. 2008;105:9349–54.

  99. Majesky MW, Dong XR, Hoglund V, Mahoney Jr WM, Daum G. The adventitia: a dynamic interface containing resident progenitor cells. Arterioscler Thromb Vasc Biol. 2011;31:1530–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sainz J, Al Haj Zen A, Caligiuri G, Demerens C, Urbain D, Lemitre M, Lafont A. Isolation of “side population” progenitor cells from healthy arteries of adult mice. Arterioscler Thromb Vasc Biol. 2006;26:281–6.

    Article  CAS  PubMed  Google Scholar 

  101. Ryzhov S, Sung BH, Zhang Q, Weaver A, Gumina RJ, Biaggioni I, Feoktistov I. Role of adenosine A2B receptor signaling in contribution of cardiac mesenchymal stem-like cells to myocardial scar formation. Purinergic Signal. 2014;10:477–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ieronimakis N, Hays AL, Janebodin K, Mahoney Jr WM, Duffield JS, Majesky MW, Reyes M. Coronary adventitial cells are linked to perivascular cardiac fibrosis via TGFβ1 signaling in the mdx mouse model of Duchenne muscular dystrophy. J Mol Cell Cardiol. 2013;63:122–34.

    Article  CAS  PubMed  Google Scholar 

  103. Ieronimakis N, Hays A, Prasad A, Janebodin K, Duffield JS, Reyes M. PDGFRα signalling promotes fibrogenic responses in collagen-producing cells in Duchenne muscular dystrophy. J Pathol. 2016;241:410–24.

    Article  Google Scholar 

  104. • Kramann R, Schneider RK, DiRocco DP, Machado F, Fleig S, Bondzie PA, Henderson JM, Ebert BL, Humphreys BD. Perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis. Cell Stem Cell. 2015;16:51–66. The authors identified a new resident perivascular cell population contributing to fibrosis across a variety of organs.

    Article  CAS  PubMed  Google Scholar 

  105. Mendoza FA, Piera-Velazquez S, Farber JL, Feghali-Bostwick C, Jiménez SA. Endothelial cells expressing endothelial and mesenchymal cell gene products in lung tissue from patients with systemic sclerosis-associated interstitial lung disease. Arthritis Rheumatol. 2016;68:210–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from NIH (HL100398) and the Department of Defense (PR151029P1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonis K. Hatzopoulos.

Ethics declarations

Conflict of Interest

Antonis K. Hatzopoulos declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Regenerative Medicine

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awgulewitsch, C.P., Trinh, L.T. & Hatzopoulos, A.K. The Vascular Wall: a Plastic Hub of Activity in Cardiovascular Homeostasis and Disease. Curr Cardiol Rep 19, 51 (2017). https://doi.org/10.1007/s11886-017-0861-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-017-0861-y

Keywords

Navigation