Skip to main content
Log in

Three-Dimensional Echocardiography of the Mitral Valve: Lessons Learned

  • Echocardiography (RM Lang, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Three-dimensional echocardiography has markedly improved our understanding of normal and pathologic mitral valve (MV) mechanics. Qualitative and quantitative analysis of three-dimensional (3D) data on the mitral valve could have a clinical impact on diagnosis, patient referral, surgical strategies, annuloplasty ring design and evaluation of the immediate and long-term surgical outcome. This review covers the contribution of 3D echocardiography in the diagnosis of MV disease, its role in selecting and monitoring surgical procedures, and in the assessment of surgical outcomes. Moreover, advantages of this technique versus the standard 2D modality, as well as future applications of advanced analysis techniques, will be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

LV:

Left ventricular

MA:

Mitral annulus

MR:

Mitral regurgitation

MV:

Mitral valve

RT3D:

Real-time three-dimensional

TEE:

Transesophageal echocardiography

TTE:

Transthoracic echocardiography

VCA:

Vena contracta area

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• Lang RM, Badano LP, Tsang W, et al. Recommendations for image acquisition and display using three-dimensional echocardiography. J Am Soc Echocardiogr. 2012;25:3–46. Comprehensive and influential recommendations on how to acquire, analyze and display cardiac structures using 3D echocardiography.

    Article  PubMed  Google Scholar 

  2. Lang RM, Badano LP, Tsang W, et al. Recommendations for image acquisition and display using three-dimensional echocardiography. Eur Heart J Cardiovasc Imaging. 2012;13:1–46.

    Article  PubMed  Google Scholar 

  3. Lang RM, Mor-avi V, Sugeng L, et al. Three-dimensional echocardiography: the benefits of the additional dimension. J Am Coll Cardiol. 2006;48:2053–69.

    Article  PubMed  Google Scholar 

  4. Salcedo EE, Quaife RA, Seres T, et al. A framework for systematic characterization of the mitral valve by real-time three-dimensional transesophageal echocardiography. J Am Soc Echocardiogr. 2009;22:1087–99.

    Article  PubMed  Google Scholar 

  5. Lang RM, Tsang W, Weinert L, et al. Valvular heart disease: the value of 3-dimensional echocardiography. J Am Coll Cardiol. 2011;58:1933–44.

    Article  PubMed  Google Scholar 

  6. Sugeng L, Shernan SK, Salgo IS, et al. Live 3-dimensional transesophageal echocardiography: initial experience using the fully-sampled matrix array probe. J Am Coll Cardiol. 2008;52:446–9.

    Article  PubMed  Google Scholar 

  7. Gripari P, Tamborini G, Barbier P, et al. Real-time three-dimensional transoesophageal echocardiography: a new intraoperative feasible and useful technology in cardiac surgery. Int J Cardiovasc Imaging. 2010;26:651–60.

    Article  PubMed  Google Scholar 

  8. Zamorano JL, Perez de Isla L, Sugeng L, et al. Non-invasive assessment of mitral valve area during percutaneous balloon mitral valvuloplasty: role of real-time 3D echocardiography. Eur Heart J. 2004;25:2086–91.

    Article  PubMed  Google Scholar 

  9. Levine RA, Handschumacher MD, Sanfilippo A, et al. Three-dimensional echocardiographic reconstruction of the mitrla valve, with implications for the diagnosis of mitral valve prolapse. Circulation. 1989;80:589–98.

    Article  PubMed  CAS  Google Scholar 

  10. Zamorano JL, Cordeiro P, Sugeng L, et al. Real-time three-dimensional echocardiography for rheumatic mitral valve stenosis evaluation: an accurate and novel approach. J Am Coll Cardiol. 2004;43:2091–6.

    Article  PubMed  Google Scholar 

  11. Iung B, Baron G, Butchart EG, et al. A prospective survey of patients with valvular heart disease in Europe: the Euro Heart Survey on valvular heart disease. Eur Heart J. 2003;24:1231–43.

    Article  PubMed  Google Scholar 

  12. Enriquez-Sarano M, Akins CW, Vahanian A. Mitral regurgitation. Lancet. 2009;373:1382–94.

    Article  PubMed  Google Scholar 

  13. Bonow RO, Carabello BA, Chatterjee K, et al. 2008 Focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practive Guidelines. J Am Coll Cardiol. 2008;52:e1–142.

    Article  PubMed  Google Scholar 

  14. •• Vahanian A, Alfieri O, Andreotti F, et al. Guidelines on the management of valvular heart disease (version 2012) The Joint Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2012;33:2451–96. Up-to-date guidelines focused on the management of valvular heart disease, with interesting clinical and surgical perspectives.

    Article  PubMed  Google Scholar 

  15. Lang RM, Mor-Avi V, Dent JM. Three-dimensional echocardiography: is it ready for everyday clinical use? JACC Cardiovasc Imaging. 2009;2:114–7.

    Article  PubMed  Google Scholar 

  16. Carpentier A, Chauvaud S, Fabiani J, et al. Reconstructive surgery of mitral valve incompetence: ten-year appraisal. J Thorac Cardiovasc Surg. 1980;79:338–48.

    PubMed  CAS  Google Scholar 

  17. • Tamborini G, Muratori M, Maltagliati A, et al. Pre-operative transthoracic real-time three-dimensional echocardiography in patients undergoing mitral valve repair: accuracy in cases with simple vs. complex prolapse lesions. Eur J Echocardiogr. 2010;39:778–85. This paper demonstrates the accuracy of transthoracic 3D echocardiography in the description of simple and complex mitral prolapse lesions in comparison with surgical findings, and correlates these data with the complexity of the surgical procedure.

    Article  Google Scholar 

  18. Pepi M, Tamborini G, Maltagliati A, et al. Head-to-head comparison of two- and three-dimensional transthoracic and transesophageal echocardiography in the localization of mitral valve prolapse. J Am Coll Cardiol. 2006;48:2524–30.

    Article  PubMed  Google Scholar 

  19. Sugeng L, Coon P, Weinert L, et al. Use of real-time 3-dimensional transthoracic echocardiography in the evaluation of mitral valve disease. J Am Soc Echocardiogr. 2006;19:413–21.

    Article  PubMed  Google Scholar 

  20. Müller S, Müller L, Laufer G, et al. Comparison of three-dimensional imaging to transesophageal echocardiography for preoperative evaluation in mitral valve prolapse. Am J Cardiol. 2006;98:243–8.

    Article  PubMed  Google Scholar 

  21. Sallustri A, Becker AE, Van Herwerden L, et al. Three-dimensiond echocardiography of normal and pathologic mitra valve: a comparison with two-dimensional transesophageal echocardiography. J Am Coll Cardiol. 1996;27:1502–10.

    Article  Google Scholar 

  22. Sharma R, Mann J, Drummond L, et al. The evaluation of real-time 3-dimensional transthoracic echocardiography for the preoperative functional assessment of patients with mitral valve prolapse: a comparison with 2-dimensional transesophageal echocardiography. J Am Soc Echocardiogr. 2007;20:934–40.

    Article  PubMed  Google Scholar 

  23. Grewal J, Mankad S, Freeman WK, et al. Real-time three-dimensional transesophageal echocardiography in the intraoperative assessment of mitral valve disease. J Am Soc Echocardiogr. 2009;22:34–41.

    Article  PubMed  Google Scholar 

  24. • La Canna G, Arendar I, Maisano F, et al. Real-time three-dimensional transesophageal echocardiography for assessment of mitral valve functional anatomy in patients with prolapse-related regurgitation. Am J Cardiol. 2011;107:1365–74. The additional diagnostic value of real-time 3D versus 2D transesophageal echocardiography is investigated in a large series of patients. The results demonstrated not only the higher accuracy of 3D versus 2D, but also the capability of recognizing dominant and secondary mitral valve lesions.

    Article  PubMed  Google Scholar 

  25. Agricola E, Oppizzi M, Pisani M, et al. Ischemic mitral regurgitation: mechanisms and echocardiographic classification. Eur J Echocardiogr. 2008;9:207–21.

    PubMed  Google Scholar 

  26. Watanabe N, Ogasawara Y, Yamaura Y, et al. Mitral annulus flattens in ischemic mitral regurgitation: geometric differences between inferior and anterior myocardial infarction: a real-time 3-dimensional echocardiographic study. Circulation. 2005;112:I458–62.

    Article  PubMed  Google Scholar 

  27. Watanabe N, Ogasawara Y, Yamaura Y, et al. Quantitation of mitral valve tenting in ischemic mitral regurgitation by transthoracic real-time three-dimensional echocardiography. J Am Coll Cardiol. 2005;45:763–9.

    Article  PubMed  Google Scholar 

  28. Saito K, Okura H, Watanabe N, et al. Influence of chronic tethering of the mitral valve on mitral leaflet size and coaptation in functional mitral regurgitation. JACC Cardiovasc Imaging. 2012;5:337–45.

    Article  PubMed  Google Scholar 

  29. Otsuji Y, Handschumacher MD, Schwammenthal E, et al. Insights from three-dimensional echocardiography into the mechanism of functional mitral regurgitation: direct in vivo demonstration of altered leaflet tethering geometry. Circulation. 1997;96:1999–2008.

    Article  PubMed  CAS  Google Scholar 

  30. Kaplan SR, Bashein G, Sheehan FH, et al. Three-dimensional echocardiographic assessment of annular shape changes in the normal and regurgitant mitral valve. Am Heart J. 2000;139:378–87.

    Article  PubMed  CAS  Google Scholar 

  31. Veronesi F, Corsi C, Sugeng L, et al. Quantification of mitral apparatus dynamics in functional and ischemic mitral regurgitation using real-time 3-dimensional echocardiography. J Am Soc Echocardiogr. 2008;234:347–54.

    Google Scholar 

  32. Ben Zekry S, Lang RM, Sugeng L, et al. Mitral annulus dynamics early after valve repair: preliminary observations of the effect of resectional versus non-resectional approaches. J Am Soc Echocardiogr. 2011;24:1233–42.

    Article  PubMed  Google Scholar 

  33. Avierinos JF, Gersh BJ, Melton 3rd LJ, et al. Natural history of asymptomatic mitral valve prolapse in the community. Circulation. 2002;106:1355–61.

    Article  PubMed  Google Scholar 

  34. Enriquez-Sarano M, Avierinos JF, Messika-Zeitoun D, et al. Quantitative determinants of the outcome of asymptomatic mitral regurgitation. N Engl J Med. 2005;352:875–83.

    Article  PubMed  CAS  Google Scholar 

  35. Thavendiranathan P, Phelan D, Collier P, et al. Quantitative assessment of mitral regurgitation: how best top do it. JACC Cardiovasc Imaging. 2012;5:1161–75.

    Article  PubMed  Google Scholar 

  36. •• Thavendiranathan P, Phelan D, Thomas JD, et al. Quantitative assessment of mitral regurgitation: validation of new methods. J Am Coll Cardiol. 2012;60:1470–83. Comprehensive and detailed overview of the novel modalities for the assessment of mitral regurgitation severity, paying special attention to the role of real-time 3D echocardiography.

    Article  PubMed  Google Scholar 

  37. Marsan NA, Westenberg JJ, Ypenburg C, et al. Quantification of functional mitral regurgitation by real-time 3D echocardiography. JACC Cardiovasc Imaging. 2009;2:1245–52.

    Article  PubMed  Google Scholar 

  38. Marsan NA, Westenberg JJ, Roes SD, et al. Three-dimensional echocardiography for the preoperative assessment of patients with left ventricular aneurysm. Ann Thorac Surg. 2011;91:113–21.

    Article  PubMed  Google Scholar 

  39. Shanks M, Siebelink HM, Delgado V, et al. Quantitative assessment of mitral regurgitation comparison between three-dimensional transesophageal echocardiography and magnetic resonance imaging. Circ Cardiovasc Imaging. 2010;3:694–700.

    Article  PubMed  Google Scholar 

  40. Thavendiranathan P, Liu S, Datta S, et al. Automated quantification of mitral inflow and aortic outflow stroke volumes by three-dimensional real-time volume color-flow Doppler transthoracic echocardiography: comparison with pulsed-Wave Doppler and cardiac magnetic resonance imaging. J Am Soc Echocardiogr. 2012;25:56–65.

    Article  PubMed  Google Scholar 

  41. Yosefy C, Levine RA, Solis J, et al. Proximal flow convergence region as assessed by real-time 3-dimensional echocardiography: challenging the hemispheric assumption. J Am Soc Echocardiogr. 2007;20:389–96.

    Article  PubMed  Google Scholar 

  42. •• Cavalcante J, Rodriguez L, Kapadia S, et al. Role of echocardiography in percutaneous mitral valve interventions. JACC Cardiovasc Imaging. 2012;5:733–46. State of the art paper focusing on the role of 3D echocardiography in the setting of percutaneous interventions, from patient selection to intraprocedural guidance and monitoring.

    Article  PubMed  Google Scholar 

  43. Inoue K, Owaki T, Nakamura T, et al. Clinical application of transvenous mitral commissurotomy by a new balloon catheter. J Thorac Cardiovasc Surg. 1984;87:394–402.

    PubMed  CAS  Google Scholar 

  44. Mahfouz RA. Utility of the posterior to anterior mitral valve leaflets length ratio in prediction of outcome of percutaneous balloon mitral valvuloplasty. Echocardiography. 2011;28:1068–73.

    Article  PubMed  Google Scholar 

  45. Whitlow PL, Feldman T, Pedersen WR, et al. Acute and 12-month results with catheter-based mitral valve leaflet repair. J Am Coll Cardiol. 2012;59:130–9.

    Article  PubMed  Google Scholar 

  46. • Altiok E, Hamada S, Brehmer K, et al. Analysis of procedural effects of percutaneous edge-to-edge mitral valve repair by 2D and 3D echocardiography. Circ Cardiovasc Imaging. 2012;5:748–55. In this research the mid-term effects of MitraClip implantion on mitral valve morphology and function is assessed using 3D echocardiography. Special care has been taken when measuring the residual regurgitation in the double orifice valve.

    Article  PubMed  Google Scholar 

  47. Maffessanti F, Lang RM, Corsi C, et al. Feasibility of left ventricular shape analysis from transthoracic real-time 3D echocardiographic images. Ultrasound Med Biol. 2009;35:1953–62.

    Article  PubMed  Google Scholar 

  48. Maffessanti F, Caiani EG, Tamborini G, et al. Serial changes in left ventricular shape following early mitral valve repair. Am J Cardiol. 2010;106:836–42.

    Article  PubMed  Google Scholar 

  49. Marsan NA, Maffessanti F, Tamborini G, et al. Left atrial reverse remodeling and functional improvement after mitral valve repair in degenerative mitral regurgitation: a real-time 3-dimensional echocardiography study. Am Heart J. 2011;161:314–21.

    Article  PubMed  Google Scholar 

  50. Caiani EG, Fusini L, Veronesi F, et al. Quantification of mitral annulus dynamic morphology in patients with mitral valve prolapse undergoing repair and annuloplasty during a 6-month follow-up. Eur J Echocardiogr. 2011;12:375–83.

    Article  PubMed  Google Scholar 

  51. Little SH, Ben Zekry S, Lawrie GM, et al. Dynamic annular geometry and function in patients with mitral regurgitation: insight from three-dimensional annular tracking. J Am Soc Echocardiogr. 2010;23:872–9.

    Article  PubMed  Google Scholar 

  52. Grewal J, Suri R, Mankad S, et al. Mitral annular dynamics in myxomatous valve disease: new insights with real-time three dimensional echocardiography. Circulation. 2010;121:1423–31.

    Article  PubMed  Google Scholar 

  53. • Maffessanti F, Marsan NA, Tamborini G, et al. Quantitative analysis of mitral valve apparatus in mitral valve prolapse before and after annuloplasty: a three-dimensional intraoperative transesophageal study. J Am Soc Echocardiogr. 2011;24:405–13. Intraoperative 3D transesophageal echocardiography is used to quantitatively describe mitral valve morphology in Barlow’s disease and fibroelastic deficiency, before and after repair with annuloplasty ring.

    Article  PubMed  Google Scholar 

  54. Chandra S, Salgo IS, Sugeng L, et al. Characterization of degenerative mitral valve disease using morphologic analysis of real-time three-dimensional echocardiographic images. Circ Cardiovasc Imaging. 2011;4:24–32.

    Article  PubMed  Google Scholar 

  55. Salgo IS, Gorman 3rd JH, Gorman RC, et al. Effect of annular shape on leaflet curvature in reducing mitral leaflet stress. Circulation. 2002;106:711–7.

    Article  PubMed  Google Scholar 

  56. Ryan LP, Jackson BM, Eperjesi TJ, et al. A methodology for assessing human mitral leaflet curvature using real-time 3-dimensional echocardiography. J Thorac Cardiovasc Surg. 2008;136:726–34.

    Article  PubMed  Google Scholar 

  57. Veronesi F, Corsi C, Sugeng L, et al. A study of functional anatomy of aortic-mitral valve coupling using 3D matrix. Circ Cardiovasc Imaging. 2009;2:24–31.

    Article  PubMed  Google Scholar 

  58. Veronesi F, Caiani EG, Sugeng L, et al. Effect of mitral valve repair on mitral-aortic coupling: a real-time three-dimensional transesophageal echocardiography study. J Am Soc Echocardiogr. 2012;25:524–31.

    Article  PubMed  Google Scholar 

  59. Votta E, Caiani E, Veronesi F, et al. Mitral valve finite-element modelling from ultrasound data: a pilot study for a new approach to understand mitral function and clinical scenarios. Philos Trans A Math Phys Eng Sci. 2008;366:3411–34.

    Article  PubMed  Google Scholar 

  60. Xu C, Brinster CJ, Jassar AS, et al. A novel approach to in vivo mitral valve stress analysis. Am J Physiol Heart Circ Physiol. 2010;299:H1790–4.

    Article  PubMed  CAS  Google Scholar 

  61. Mansi T, Voigt I, Georgescu B, et al. An integrated framework for finite-element modeling of mitral valve biomechanics from medical images: application to MitralClip intervention planning. Med Image Anal. 2012;16:1330–46.

    Article  PubMed  Google Scholar 

  62. Pouch AM, Xu C, Yushkevich PA, et al. Semi-automated mitral valve morphometry and computational stress analysis using 3D ultrasound. J Biomech. 2012;45:903–7.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Francesco Maffessanti declares that he has no conflict of interest.

Oana Mirea declares that she has no conflict of interest.

Gloria Tamborini declares that she has no conflict of interest.

Mauro Pepi declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Maffessanti.

Additional information

This article is part of the Topical Collection on Echocardiography

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maffessanti, F., Mirea, O., Tamborini, G. et al. Three-Dimensional Echocardiography of the Mitral Valve: Lessons Learned. Curr Cardiol Rep 15, 377 (2013). https://doi.org/10.1007/s11886-013-0377-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-013-0377-z

Keywords

Navigation