Skip to main content

Advertisement

Log in

PCSK9 Inhibitors: Potential in Cardiovascular Therapeutics

  • New Therapies for Cardiovascular Disease (K Mahaffey, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Despite the efficacy of statin therapy, patients treated with these agents face substantial residual risk that is associated with achieved levels of LDL cholesterol (LDL-C). These observations suggest a potential benefit of additional strategies to promote further LDL-C reduction. Proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as an attractive target in this regard. Abrogation of PCSK9 function prevents PCSK9-mediated catabolism of LDL receptors, increases cell surface LDL receptor density, and promotes clearance of LDL and other atherogenic lipoproteins from the circulation. Thus far, the most advanced approaches to block PCSK9 action are monoclonal antibodies and anti-sense oligonucleotides. Among statin-treated patients, these agents may produce additional LDL-C lowering exceeding 50 %. In rare genetic experiments of nature, individuals with dominant negative or dual loss of function mutations of PCSK9 appear to have no adverse health effects resulting from lifelong, very low levels of LDL-C. In short-term trials, PCSK9 antibodies have been generally well-tolerated. However, evidence to support long-term safety and efficacy of PCSK9 therapy to reduce cardiovascular risk awaits the results of large cardiovascular outcome trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •Of importance •• Of major importance

  1. Wilson PW, Garrison RJ, Castelli WP, Feinleib M, McNamara PM, Kannel WB. Prevalence of coronary heart disease in the Framingham Offspring Study: role of lipoprotein cholesterols. Am J Cardiol. 1980;46:649–54.

    Article  PubMed  CAS  Google Scholar 

  2. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 2002;360:7–22.

    Google Scholar 

  3. •• Baigent C, Blackwell L, Emberson J, et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet. 2010;376:1670–81. A meta-analysis indicating that more intensive statin therapy, resulting in greater LDL-C reduction, is associated with cardiovascular risk reduction compared with less intensive statin therapy, even when LDL-C level on less intensive therapy is below 2 mmol/L.

    Article  PubMed  CAS  Google Scholar 

  4. O’Keefe Jr JH, Cordain L, Harris WH, Moe RM, Vogel R. Optimal low-density lipoprotein is 50 to 70 mg/dl: lower is better and physiologically normal. J Am Coll Cardiol. 2004;43:2142–6.

    Article  PubMed  Google Scholar 

  5. Glueck CJ, Kelley W, Gupta A, Fontaine RN, Wang P, Gartside PS. Prospective 10-year evaluation of hypobetalipoproteinemia in a cohort of 772 firefighters and cross-sectional evaluation of hypocholesterolemia in 1,479 men in the National Health and Nutrition Examination Survey I. Metabolism. 1997;46:625–33.

    Article  PubMed  CAS  Google Scholar 

  6. Wiviott SD, Cannon CP, Morrow DA, Ray KK, Pfeffer MA, Braunwald E. Can low-density lipoprotein be too low? The safety and efficacy of achieving very low low-density lipoprotein with intensive statin therapy: a PROVE IT-TIMI 22 substudy. J Am Coll Cardiol. 2005;46:1411–6.

    Article  PubMed  CAS  Google Scholar 

  7. • Hsia J, MacFadyen JG, Monyak J, Ridker PM. Cardiovascular event reduction and adverse events among subjects attaining low-density lipoprotein cholesterol <50 mg/dl with rosuvastatin. The JUPITER trial (Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin). J Am Coll Cardiol. 2011;57:1666–75. This post hoc analysis of the JUPITER trial demonstrated progressively lower cardiovascular risk without safety concerns among patients allocated to treatment with placebo, rosuvastatin 20 mg daily with achieved LDL-C ≥50 mg/dl, or rosuvastatin 20 mg daily with achieved LDL-C <50 mg/dl.

    Article  PubMed  CAS  Google Scholar 

  8. Boden WE, Probstfield JL, Anderson T, et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med. 2011;365:2255–67.

    Article  PubMed  Google Scholar 

  9. Cannon CP, Giugliano RP, Blazing MA, et al. Rationale and design of IMPROVE-IT (IMProved Reduction of Outcomes: Vytorin Efficacy International Trial): comparison of ezetimbe/simvastatin versus simvastatin monotherapy on cardiovascular outcomes in patients with acute coronary syndromes. Am Heart J. 2008;156:826–32.

    Article  PubMed  CAS  Google Scholar 

  10. Grundy SM, Cleeman JI, Merz CN, et al. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Circulation. 2004;110:227–39.

    Article  PubMed  Google Scholar 

  11. Karalis DG, Victor B, Ahedor L, Liu L. Use of lipid-lowering medications and the likelihood of achieving optimal LDL-cholesterol goals in coronary artery disease patients. Cholesterol. 2012;2012:861924.

    Article  PubMed  Google Scholar 

  12. Sachdeva A, Cannon CP, Deedwania PC, et al. Lipid levels in patients hospitalized with coronary artery disease: an analysis of 136,905 hospitalizations in get with the guidelines. Am Heart J. 2009;157:111–7.

    Article  PubMed  CAS  Google Scholar 

  13. • Kotseva K, Wood D, De BG, De BD, Pyorala K, Keil U. EUROASPIRE III: a survey on the lifestyle, risk factors and use of cardioprotective drug therapies in coronary patients from 22 European countries. Eur J Cardiovasc Prev Rehabil. 2009;16:121–37. A large multinational survey of primary and secondary cardiovascular prevention measures demonstrating that a large proportion of patients still do not reach targets for total or LDL cholesterol.

    Article  PubMed  Google Scholar 

  14. Sattar N, Preiss D, Murray HM, et al. Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. Lancet. 2010;375:735–42.

    Article  PubMed  CAS  Google Scholar 

  15. Rajpathak SN, Kumbhani DJ, Crandall J, Barzilai N, Alderman M, Ridker PM. Statin therapy and risk of developing type 2 diabetes: a meta-analysis. Diabetes Care. 2009;32:1924–9.

    Article  PubMed  CAS  Google Scholar 

  16. Charles EC, Olson KL, Sandhoff BG, McClure DL, Merenich JA. Evaluation of cases of severe statin-related transaminitis within a large health maintenance organization. Am J Med. 2005;118:618–24.

    Article  PubMed  CAS  Google Scholar 

  17. •• McKenney JM, Koren MJ, Kereiakes DJ, Hanotin C, Ferrand AC, Stein EA. Safety and efficacy of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 serine protease, SAR236553/REGN727, in patients with primary hypercholesterolemia receiving ongoing stable atorvastatin therapy. J Am Coll Cardiol. 2012;59:2344–53. A phase II trial demonstrating that parenteral administration of a fully human monoclonal antibody to PCSK9 produced 40–70 % reduction in LDL cholesterol from baseline levels on stable atorvastatin therapy.

    Article  PubMed  CAS  Google Scholar 

  18. • Goldstein JL, Brown MS. The LDL receptor. Arterioscler Thromb Vasc Biol. 2009;29:431–8. A historical review of the discovery of the LDL receptor by two Nobel Prize laureates, which led to new ways of thinking about cholesterol metabolism and the discovery of statins. This pioneering work led to new concepts of receptor-mediated endocytosis, receptor recycling, and feedback regulation of receptors.

    Article  PubMed  CAS  Google Scholar 

  19. Akram ON, Bernier A, Petrides F, Wong G, Lambert G. Beyond LDL cholesterol, a new role for PCSK9. Arterioscler Thromb Vasc Biol. 2010;30:1279–81.

    Article  PubMed  CAS  Google Scholar 

  20. Ferri N, Tibolla G, Pirillo A, et al. Proprotein convertase subtilisin kexin type 9 (PCSK9) secreted by cultured smooth muscle cells reduces macrophages LDLR levels. Atherosclerosis. 2012;220:381–6.

    Article  PubMed  CAS  Google Scholar 

  21. Wu CY, Tang ZH, Jiang L, Li XF, Jiang ZS, Liu LS. PCSK9 siRNA inhibits HUVEC apoptosis induced by ox-LDL via Bcl/Bax-caspase9-caspase3 pathway. Mol Cell Biochem. 2012;359:347–58.

    Article  PubMed  CAS  Google Scholar 

  22. Denis M, Marcinkiewicz J, Zaid A, et al. Gene inactivation of proprotein convertase subtilisin/kexin type 9 reduces atherosclerosis in mice. Circulation. 2012;125:894–901.

    Article  PubMed  CAS  Google Scholar 

  23. Davignon J, Dubuc G, Seidah NG. The influence of PCSK9 polymorphisms on serum low-density lipoprotein cholesterol and risk of atherosclerosis. Curr Atheroscler Rep. 2010;12:308–15.

    Article  PubMed  CAS  Google Scholar 

  24. Abifadel M, Varret M, Rabes JP, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet. 2003;34:154–6.

    Article  PubMed  CAS  Google Scholar 

  25. Naoumova RP, Tosi I, Patel D, et al. Severe hypercholesterolemia in four British families with the D374Y mutation in the PCSK9 gene: long-term follow-up and treatment response. Arterioscler Thromb Vasc Biol. 2005;25:2654–60.

    Article  PubMed  CAS  Google Scholar 

  26. Cohen JC, Boerwinkle E, Mosley Jr TH, Hobbs HH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med. 2006;354:1264–72.

    Article  PubMed  CAS  Google Scholar 

  27. Zhao Z, Tuakli-Wosornu Y, Lagace TA, et al. Molecular characterization of loss-of-function mutations in PCSK9 and identification of a compound heterozygote. Am J Hum Genet. 2006;79:514–23.

    Article  PubMed  CAS  Google Scholar 

  28. Yue P, Averna M, Lin X, Schonfeld G. The c.43_44insCTG variation in PCSK9 is associated with low plasma LDL-cholesterol in a Caucasian population. Hum Mutat. 2006;27:460–6.

    Article  PubMed  CAS  Google Scholar 

  29. • Cariou B, Ouguerram K, Zair Y, et al. PCSK9 dominant negative mutant results in increased LDL catabolic rate and familial hypobetalipoproteinemia. Arterioscler Thromb Vasc Biol. 2009;29:2191–7. In examining a French family with familial hypobetalipoproteinemia, this study is the first demonstration of increased LDL catabolism in humans with PCSK9 LOF mutations.

  30. Hooper AJ, Marais AD, Tanyanyiwa DM, Burnett JR. The C679X mutation in PCSK9 is present and lowers blood cholesterol in a Southern African population. Atherosclerosis. 2007;193:445–8. References 27–30.

    Article  PubMed  CAS  Google Scholar 

  31. Shan L, Pang L, Zhang R, Murgolo NJ, Lan H, Hedrick JA. PCSK9 binds to multiple receptors and can be functionally inhibited by an EGF-A peptide. Biochem Biophys Res Commun. 2008;375:69–73.

    Article  PubMed  CAS  Google Scholar 

  32. McNutt MC, Kwon HJ, Chen C, Chen JR, Horton JD, Lagace TA. Antagonism of secreted PCSK9 increases low density lipoprotein receptor expression in HepG2 cells. J Biol Chem. 2009;284:10561–70.

    Article  PubMed  CAS  Google Scholar 

  33. Du F, Hui Y, Zhang M, Linton MF, Fazio S, Fan D. Novel domain interaction regulates secretion of proprotein convertase subtilisin/kexin type 9 (PCSK9) protein. J Biol Chem. 2011;286:43054–61.

    Article  PubMed  CAS  Google Scholar 

  34. Lipovsek D. Adnectins: engineered target-binding protein therapeutics. Protein Eng Des Sel. 2011;24:3–9.

    Article  PubMed  CAS  Google Scholar 

  35. McNutt MC, Lagace TA, Horton JD. Catalytic activity is not required for secreted PCSK9 to reduce low density lipoprotein receptors in HepG2 cells. J Biol Chem. 2007;282:20799–803.

    Article  PubMed  CAS  Google Scholar 

  36. Benjannet S, Hamelin J, Chretien M, Seidah NG. Loss- and gain-of-function PCSK9 variants: cleavage specificity, dominant negative effects, and low density lipoprotein receptor (LDLR) degradation. J Biol Chem. 2012;287:33745–55.

    Article  PubMed  CAS  Google Scholar 

  37. Visser ME, Wagener G, Baker BF, et al. Mipomersen, an apolipoprotein B synthesis inhibitor, lowers low-density lipoprotein cholesterol in high-risk statin-intolerant patients: a randomized, double-blind, placebo-controlled trial. Eur Heart J. 2012;33:1142–9.

    Article  PubMed  CAS  Google Scholar 

  38. Raal FJ, Santos RD, Blom DJ, et al. Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial. Lancet. 2010;375:998–1006.

    Article  PubMed  CAS  Google Scholar 

  39. Graham MJ, Lemonidis KM, Whipple CP, et al. Antisense inhibition of proprotein convertase subtilisin/kexin type 9 reduces serum LDL in hyperlipidemic mice. J Lipid Res. 2007;48:763–7.

    Article  PubMed  CAS  Google Scholar 

  40. Nielsen CB, Singh SK, Wengel J, Jacobsen JP. The solution structure of a locked nucleic acid (LNA) hybridized to DNA. J Biomol Struct Dyn. 1999;17:175–91.

    Article  PubMed  CAS  Google Scholar 

  41. Straarup EM, Fisker N, Hedtjarn M, et al. Short locked nucleic acid antisense oligonucleotides potently reduce apolipoprotein B mRNA and serum cholesterol in mice and non-human primates. Nucleic Acids Res. 2010;38:7100–11.

    Article  PubMed  CAS  Google Scholar 

  42. • Gupta N, Fisker N, Asselin MC, et al. A locked nucleic acid antisense oligonucleotide (LNA) silences PCSK9 and enhances LDLR expression in vitro and in vivo. PLoS One. 2010;5:e10682. The first study to demonstrate efficacy of a potent, high affinity locked nucleic acid antisense oligonucleotide in PCSK9 inhibition. It reduced PCSK9 mRNA and protein in human and mouse cell culture lines and upregulated hepatic LDLR in mice in vivo.

    Article  PubMed  Google Scholar 

  43. Lindholm MW, Elmen J, Fisker N, et al. PCSK9 LNA antisense oligonucleotides induce sustained reduction of LDL cholesterol in nonhuman primates. Mol Ther. 2012;20:376–81.

    Article  PubMed  CAS  Google Scholar 

  44. Frank-Kamenetsky M, Grefhorst A, Anderson NN, et al. Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates. Proc Natl Acad Sci U S A. 2008;105:11915–20.

    Article  PubMed  CAS  Google Scholar 

  45. • Maxwell KN, Breslow JL. Antibodies to PCSK9: a superior way to lower LDL cholesterol? Circ Res. 2012;111:274–7. Commentary on the current status of PCSK9 inhibition therapies.

    Article  PubMed  CAS  Google Scholar 

  46. •• Giugliano RP, Desai NR, Kohli P, et al. Efficacy, safety, and tolerability of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 in combination with a statin in patients with hypercholesterolaemia (LAPLACE-TIMI 57): a randomised, placebo-controlled, dose-ranging, phase 2 study. Lancet. 2012;380(9858):2007–17. The largest phase 2 trial of a PCSK9 antibody to date. It evaluated AMG 145 or placebo in 631 subjects with hypercholesterolemia on stable dose of statin with or without ezetimibe.

    Article  PubMed  CAS  Google Scholar 

  47. •• Koren MJ, Scott R, Kim JB, et al. Efficacy, safety, and tolerability of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 as monotherapy in patients with hypercholesterolaemia (MENDEL): a randomised, double-blind, placebo-controlled, phase 2 study. Lancet. 2012;380(9858):1995–2006. Placebo-controlled phase 2 study evaluating AMG 145 in 406 patients with hypercholesterolemia who were not already on lipid-lowering therapy.

    Article  PubMed  CAS  Google Scholar 

  48. •• Raal F, Scott R, Somaratne R, et al. Low-density lipoprotein cholesterol-lowering effects of AMG 145, a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 serine protease in patients with heterozygous familial hypercholesterolemia: the reduction of LDL-C with PCSK9 inhibition in heterozygous familial hypercholesterolemia disorder (RUTHERFORD) randomized trial. Circulation. 2012;126:2408–17. Phase 2 multicenter, placebo-controlled trial evaluating AMG 145 administered every 4 weeks in 167 patients with heterozygous familial hypercholesterolemia on background lipid-lowering therapies. AMG 145 reduced LDL-C by 43–55 %.

    Article  PubMed  CAS  Google Scholar 

  49. •• Roth EM, McKenney JM, Hanotin C, Asset G, Stein EA. Atorvastatin with or without an antibody to PCSK9 in primary hypercholesterolemia. N Engl J Med. 2012;367:1891–900. Phase 2 placebo-controlled trial of REGN727/SAR236553 in 92 subjects with primary hypercholesterolemia treated with atorvastatin.

    Article  PubMed  CAS  Google Scholar 

  50. •• Stein EA, Gipe D, Bergeron J, et al. Effect of a monoclonal antibody to PCSK9, REGN727/SAR236553, to reduce low-density lipoprotein cholesterol in patients with heterozygous familial hypercholesterolaemia on stable statin dose with or without ezetimibe therapy: a phase 2 randomised controlled trial. Lancet. 2012;380:29–36. Report of a phase 2, multicenter, placebo-controlled trial evaluating the effect of REGN727/SAR236553 at different dosing regimens added to background therapy with statin with or without ezetimibe.

    Article  PubMed  CAS  Google Scholar 

  51. •• Sullivan D, Olsson AG, Scott R, et al. Effect of a monoclonal antibody to PCSK9 on low-density lipoprotein cholesterol levels in statin-intolerant patients: the GAUSS randomized trial. JAMA. 2012. doi:10.1001/jama.2012.25790. Phase 2 placebo-controlled clinical trial evaluating AMG 145 in 157 subjects unable to take or uptitrate statins due to myalgias or myopathy. AMG 145 was well tolerated in most patients and produced reductions in LDL-C of 41–63 %.

  52. • Chan JC, Piper DE, Cao Q, et al. A proprotein convertase subtilisin/kexin type 9 neutralizing antibody reduces serum cholesterol in mice and nonhuman primates. Proc Natl Acad Sci U S A. 2009;106:9820–5. The first anti-PCSK9 antibody, tested in cynomolgus monkeys, with a single intravenous administration resulting in LDL-C reduction of 80 %.

    Article  PubMed  CAS  Google Scholar 

  53. Ni YG, Di MS, Condra JH, et al. A PCSK9-binding antibody that structurally mimics the EGF(A) domain of LDL-receptor reduces LDL cholesterol in vivo. J Lipid Res. 2011;52:78–86.

    Article  PubMed  CAS  Google Scholar 

  54. Zhang L, McCabe T, Condra JH, et al. An anti-PCSK9 antibody reduces LDL-cholesterol on top of a statin and suppresses hepatocyte SREBP-regulated genes. Int J Biol Sci. 2012;8:310–27.

    Article  PubMed  CAS  Google Scholar 

  55. Liang H, Chaparro-Riggers J, Strop P, et al. Proprotein convertase substilisin/kexin type 9 antagonism reduces low-density lipoprotein cholesterol in statin-treated hypercholesterolemic nonhuman primates. J Pharmacol Exp Ther. 2012;340:228–36.

    Article  PubMed  CAS  Google Scholar 

  56. Chaparro-Riggers J, Liang H, DeVay RM, et al. Increasing serum half-life and extending cholesterol lowering in vivo by engineering antibody with pH-sensitive binding to PCSK9. J Biol Chem. 2012;287:11090–7.

    Article  PubMed  CAS  Google Scholar 

  57. Dias CS, Shaywitz AJ, Wasserman SM, et al. Effects of AMG 145 on low-density lipoprotein cholesterol levels: results from 2 randomized, double-blind, placebo-controlled, ascending-dose phase 1 studies in healthy volunteers and hypercholesterolemic subjects on statins. J Am Coll Cardiol. 2012;60:1888–98.

    Article  PubMed  CAS  Google Scholar 

  58. •• Stein EA, Mellis S, Yancopoulos GD, et al. Effect of a monoclonal antibody to PCSK9 on LDL cholesterol. N Engl J Med. 2012;366:1108–18. Report of three phase 1 trials testing fully human PCSK9 antibody REGN727/SAR236553 in healthy subjects, and in subjects with familial or non-familial hypercholesterolemia.

    Article  PubMed  CAS  Google Scholar 

  59. Ridker PM, Danielson E, Fonseca FA, et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med. 2008;359:2195–207.

    Article  PubMed  CAS  Google Scholar 

  60. LaRosa JC, Grundy SM, Waters DD, et al. Intensive lipid lowering with atorvastatin in patients with stable coronary disease. N Engl J Med. 2005;352:1425–35.

    Article  PubMed  CAS  Google Scholar 

  61. Lewington S, Whitlock G, Clarke R, et al. Blood cholesterol and vascular mortality by age, sex, and blood pressure: a meta-analysis of individual data from 61 prospective studies with 55,000 vascular deaths. Lancet. 2007;370:1829–39.

    Article  PubMed  Google Scholar 

  62. Amarenco P, Bogousslavsky J, Callahan III A, et al. High-dose atorvastatin after stroke or transient ischemic attack. N Engl J Med. 2006;355:549–59.

    Article  PubMed  CAS  Google Scholar 

  63. • McKinney JS, Kostis WJ. Statin therapy and the risk of intracerebral hemorrhage: a meta-analysis of 31 randomized controlled trials. Stroke. 2012;43:2149–56. A meta-analysis indicating lack of relationship between statin therapy and risk of hemorrhagic stroke.

    Article  PubMed  CAS  Google Scholar 

  64. McGuinness B, O’Hare J, Craig D, Bullock R, Malouf R, Passmore P. Statins for the treatment of dementia. Cochrane Database Syst Rev. 2010;(8):CD007514.

  65. Seidah NG, Benjannet S, Wickham L, et al. The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation. Proc Natl Acad Sci U S A. 2003;100:928–33.

    Article  PubMed  CAS  Google Scholar 

  66. Heikkila P, Kahri AI, Ehnholm C, Kovanen PT. The effect of low- and high-density lipoprotein cholesterol on steroid hormone production and ACTH-induced differentiation of rat adrenocortical cells in primary culture. Cell Tissue Res. 1989;256:487–94.

    Article  PubMed  CAS  Google Scholar 

  67. Jenkins DJ, Kendall CW, Nguyen TH, et al. Effect on hematologic risk factors for coronary heart disease of a cholesterol reducing diet. Eur J Clin Nutr. 2007;61:483–92.

    PubMed  CAS  Google Scholar 

  68. Yavuz B, Ertugrul DT, Cil H, et al. Increased levels of 25 hydroxyvitamin D and 1,25-dihydroxyvitamin D after rosuvastatin treatment: a novel pleiotropic effect of statins? Cardiovasc Drugs Ther. 2009;23:295–9.

    Article  PubMed  CAS  Google Scholar 

  69. Roubtsova A, Munkonda MN, Awan Z, et al. Circulating proprotein convertase subtilisin/kexin 9 (PCSK9) regulates VLDLR protein and triglyceride accumulation in visceral adipose tissue. Arterioscler Thromb Vasc Biol. 2011;31:785–91.

    Article  PubMed  CAS  Google Scholar 

  70. Zaid A, Roubtsova A, Essalmani R, et al. Proprotein convertase subtilisin/kexin type 9 (PCSK9): hepatocyte-specific low-density lipoprotein receptor degradation and critical role in mouse liver regeneration. Hepatology. 2008;48:646–54.

    Article  PubMed  CAS  Google Scholar 

  71. Spady DK, Bilheimer DW, Dietschy JM. Rates of receptor-dependent and -independent low density lipoprotein uptake in the hamster. Proc Natl Acad Sci U S A. 1983;80:3499–503.

    Article  PubMed  CAS  Google Scholar 

  72. Le MC, Kourimate S, Langhi C, et al. Proprotein convertase subtilisin kexin type 9 null mice are protected from postprandial triglyceridemia. Arterioscler Thromb Vasc Biol. 2009;29:684–90.

    Article  Google Scholar 

  73. Leblond F, Seidah NG, Precourt LP, Delvin E, Dominguez M, Levy E. Regulation of the proprotein convertase subtilisin/kexin type 9 in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2009;296:G805–15.

    Article  PubMed  CAS  Google Scholar 

  74. Mbikay M, Sirois F, Mayne J, et al. PCSK9-deficient mice exhibit impaired glucose tolerance and pancreatic islet abnormalities. FEBS Lett. 2010;584:701–6.

    Article  PubMed  CAS  Google Scholar 

  75. Labonte P, Begley S, Guevin C, et al. PCSK9 impedes hepatitis C virus infection in vitro and modulates liver CD81 expression. Hepatology. 2009;50:17–24.

    Article  PubMed  CAS  Google Scholar 

  76. Poirier S, Prat A, Marcinkiewicz E, et al. Implication of the proprotein convertase NARC-1/PCSK9 in the development of the nervous system. J Neurochem. 2006;98:838–50.

    Article  PubMed  CAS  Google Scholar 

  77. Kysenius K, Muggalla P, Matlik K, Arumae U, Huttunen HJ. PCSK9 regulates neuronal apoptosis by adjusting ApoER2 levels and signaling. Cell Mol Life Sci. 2012;69:1903–16.

    Article  PubMed  CAS  Google Scholar 

  78. Ranheim T, Mattingsdal M, Lindvall JM, et al. Genome-wide expression analysis of cells expressing gain of function mutant D374Y-PCSK9. J Cell Physiol. 2008;217:459–67.

    Article  PubMed  CAS  Google Scholar 

  79. Lan H, Pang L, Smith MM, et al. Proprotein convertase subtilisin/kexin type 9 (PCSK9) affects gene expression pathways beyond cholesterol metabolism in liver cells. J Cell Physiol. 2010;224:273–81.

    PubMed  CAS  Google Scholar 

  80. LaRosa JC, Grundy SM, Kastelein JJ, Kostis JB, Greten H. Safety and efficacy of Atorvastatin-induced very low-density lipoprotein cholesterol levels in Patients with coronary heart disease (a post hoc analysis of the treating to new targets [TNT] study). Am J Cardiol. 2007;100:747–52.

    Article  PubMed  CAS  Google Scholar 

  81. Cannon CP, Shah S, Dansky HM, et al. Safety of anacetrapib in patients with or at high risk for coronary heart disease. N Engl J Med. 2010;363:2406–15.

    Article  PubMed  CAS  Google Scholar 

  82. Nicholls SJ, Brewer HB, Kastelein JJ, et al. Effects of the CETP inhibitor evacetrapib administered as monotherapy or in combination with statins on HDL and LDL cholesterol: a randomized controlled trial. JAMA. 2011;306:2099–109.

    Article  PubMed  CAS  Google Scholar 

  83. Lambert G, Sjouke B, Choque B, Kastelein JJ, Hovingh GK. The PCSK9 decade. J Lipid Res. 2012;53:2515–24.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their appreciation to Ms. Carol Hudson, Dr. Marc Israel, and Dr. Bill Sasiela of Regeneron Pharmaceuticals for providing the figure in this manuscript.

Disclosure

Conflicts of interest: R.Q. Do: none; R.A. Vogel: serves as a consultant to Sanofi; has a pending appointment as national coordinator on Phase III trial; G.G. Schwartz: Through his institution, has received research support from Sanofi, Roche, and Anthera .

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory G. Schwartz.

Additional information

This article is part of the Topical Collection on New Therapies for Cardiovascular Disease

Rights and permissions

Reprints and permissions

About this article

Cite this article

Do, R.Q., Vogel, R.A. & Schwartz, G.G. PCSK9 Inhibitors: Potential in Cardiovascular Therapeutics. Curr Cardiol Rep 15, 345 (2013). https://doi.org/10.1007/s11886-012-0345-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-012-0345-z

Keywords

Navigation