Skip to main content
Log in

Abstract

We investigate H-distributions for sequences in the dual pairs of Bessel spaces, \((H^q_s , H^{p}_{-s}), s\in \mathbb {R}, q>1\) and \(q=p/(p-1),\) by the use of unbounded multipliers, with the finite regularity, as test functions. The results relating weak convergence, H-distributions and strong convergence are applied in the analysis of strong convergence for a sequence of approximated solutions to a class of differential equations \(P(x,D)u_n=f_n\), where P(xD) is a differential operator of order k with coefficients in the Schwartz class and \((f_n)\) is a strongly convergent sequence in an appropriate Bessel potential space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abels, H.: Pseudodifferential and Singular Integral Operators. An Introduction with Applications. De Gruyter, Berlin (2012)

    MATH  Google Scholar 

  2. Adams, R.A.: Sobolev Spaces. Pure and Applied Mathematics, vol. 65. Academic Press, New York-London (1975)

    Google Scholar 

  3. Aleksić, J., Mitrović, D., Pilipović, S.: Hyperbolic conservation laws with vanishing nonlinear diffusion and linear dispersion in heterogeneous media. J. Evol. Equ. 9, 809–828 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aleksić, J., Pilipović, S., Vojnović, I.: H-distributions via Sobolev spaces. Mediterr. J. Math. 13(5), 3499–3512 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Antonić, N., Lazar, M.: Parabolic variant of H-measures in homogenisation of a model problem based on Navier–Stokes equation. Nonlinear Anal. Real World Appl. 11, 4500–4512 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Antonić, N., Mitrović, D.: H-distributions: an extension of H-measures to an \(L^p-L^q\) setting. Abstr. Appl. Anal. 2011, 12 (2011), Art. ID 901084

  7. Gérard, P.: Microlocal defect measures. Comm. Part. Differ. Equ. 16, 1761–1794 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Köthe, G.: Topological Vector Spaces. Springer, Berlin (1969)

    MATH  Google Scholar 

  9. Kumano-go, H.: Pseudo-Differential Operators. The MIT Press, Cambridge, MA (1974)

    MATH  Google Scholar 

  10. Muscalu, C., Schlag, W.: Cambridge studies in advanced mathematics. In: Classical and Multilinear Harmonic Analysis, Vol. 1, p. 197 (2013)

  11. Panov, EYu.: On sequences of measure-valued solutions of a first-order quasilinear equation. Mat. Sb. 185, 87–106 (1994)

    Google Scholar 

  12. Panov, E.Yu.: Ultra-parabolic H-measures and compensated compactness. Ann. Inst. H. Poincare Anal. Non Lineaire 28, 47–62 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Petzeltová, H., Vrbová, P.: Factorization in the algebra of rapidly decreasing functions on \(\mathbb{R}^{n}\). Comment. Math. Univ. Carol. 19, 489–499 (1978)

    MathSciNet  MATH  Google Scholar 

  14. Tartar, L.: H-measures, a new approach for studying homogenization, oscillations and concentration effects in partial differential equations. Proc. R. Soc. Edinb. Sect. A 115, 193–230 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. Tréves, F.: Topological Vector Spaces, Distributions and Kernels. Academic Press, New York (1967)

    MATH  Google Scholar 

  16. Wong, M.W.: Spectral theory of pseudo-differential operators. Adv. Appl. Math. 15, 437–451 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wong, M.W.: An Introduction to Pseudo-Differential Operators, 2nd edn. World Scientific, Singapore (1999)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana Vojnović.

Additional information

The work presented in this paper is partially supported by Ministry of Education and Science, Republic of Serbia, Project No. 174024.

A \(L^p\)-boundedness theorem

A \(L^p\)-boundedness theorem

Theorem 13

Let N be an integer such that \({N > 2d}\), \({1<p < \infty }\) and \(\displaystyle T: S_{N}^{0}\times L^p\left( \mathbb {R}^d\right) \rightarrow L^p\left( \mathbb {R}^d\right) \) be defined by

$$\begin{aligned} T(\sigma ,u)=T_\sigma u. \end{aligned}$$

Then, T is a continuous bilinear operator and there exists \(c_N > 0\) such that the following estimate holds

$$\begin{aligned} \left\| T_{\sigma }u\right\| _{L^p}\le c_{N} \left| \sigma \right| _{S_N^0}\left\| u\right\| _{L^p}. \end{aligned}$$
(25)

Proof

Steps of the proof are the same as in the proof of Theorem 10.7 from [17]. For the sake of completeness, we will focus ourselves on constants appearing in the estimates of Theorem 10.7, which will imply continuity with respect to \(\sigma \). We represent \(\displaystyle \mathbb {R}^d\) as a union of cubes, i.e. \(\mathbb {R}^d=\bigcup _{l \in \mathbb {Z}^d} Q_l\), where \(Q_l\) is the cube with centre at l, with edges parallel to coordinate axes and of length one. Further on, we introduce \(\displaystyle \eta \in \displaystyle C_{c}^{\infty }\left( \mathbb {R}^d\right) \) such that \(\eta (x)=1\) for \(\displaystyle x \in Q_0\) and define \(\sigma _{l}(x,\xi )=\eta (x-l)\sigma (x,\xi )\), \(x,\xi \in \mathbb {R}^d, \; l \in \mathbb {Z}^d\). Then \(\displaystyle T(\sigma _l,\cdot )=T_{\sigma _l}=\eta (x-l)T_\sigma \) and

$$\begin{aligned} \int _{Q_l}\big |\left( T_{\sigma }\varphi \right) (x)\big |^p dx \le \int _{\mathbb {R}^d}\left| \left( T_{\sigma _l}\varphi \right) (x)\right| ^p dx,\ \ \varphi \in {{\mathscr {S}}}\left( \mathbb {R}^d\right) . \end{aligned}$$
(26)

Next,

$$\begin{aligned} (T_{\sigma _l}\varphi )(x)=(2\pi )^{-d}\int _{\mathbb {R}^d}e^{ i x \lambda }\left[ (2\pi )^{-d}\int _{\mathbb {R}^d} e^{ ix \xi }\hat{\sigma }_{l}(\lambda ,\xi )\hat{\varphi }(\xi )d\xi \right] d\lambda , \end{aligned}$$
(27)

where \(\hat{\sigma }_l(\lambda ,\xi )=\int _{\mathbb {R}^d}e^{- i \lambda x} \sigma _l(x,\xi )dx\) for \(\lambda ,\xi \in \mathbb {R}^d\). The proof of Lemma 10.9 in [17] gives that for all \(\displaystyle \alpha \), \(\beta \in \mathbb {N}_{0}^{d},\)

$$\begin{aligned} \left| (-i\lambda )^\beta \partial _{\xi }^{\alpha } \hat{\sigma }_l(\lambda ,\xi )\right| \le c_\beta \langle \xi \rangle ^{-\left| \alpha \right| }\sup _{\gamma \le \beta , x,\xi \in \mathbb {R}^d}\left| \partial _{\xi }^{\alpha } \partial _{x}^{\gamma }\sigma (x,\xi )\right| \langle \xi \rangle ^{\left| \alpha \right| }. \end{aligned}$$

Moreover, for all \(\displaystyle \alpha \in {\mathbb {N}}_0^{d}\) and for all positive integers n there is a \(c_{n}>0\) such that

$$\begin{aligned} \left| \partial _{\xi }^{\alpha }\hat{\sigma }_l(\lambda ,\xi )\right| \le c_{n}\langle \xi \rangle ^{-\left| \alpha \right| }\left( 1+\left| \lambda \right| \right) ^{-n} \left( \sup _{\left| \beta \right| \le n, x,\xi \in \mathbb {R}^d} \left| \partial _{\xi }^{\alpha }\partial _{x}^{\beta }\sigma (x,\xi )\right| \langle \xi \rangle ^{\left| \alpha \right| }\right) . \end{aligned}$$
(28)

Hence, for any integer \(N > d/2\) we conclude from (28) that \(|\partial _{\xi }^{\alpha }\hat{\sigma }_l(\lambda ,\xi )|\le B |\xi |^{-|\alpha |}\) for \(|\xi |>\xi _0\) and \(|\alpha | \le N\), where

$$\begin{aligned} B=c_N\left( 1+\left| \lambda \right| \right) ^{-N} \max _{\left| \alpha \right| , \left| \beta \right| \le N}\sup _{x,\xi \in \mathbb {R}^d}\left| \partial _{\xi }^{\alpha }\partial _{x}^{\beta }\sigma (x,\xi )\right| \langle \xi \rangle ^{\left| \alpha \right| }. \end{aligned}$$

Therefore, we can use Theorem 1 with \(\psi (\xi )= \hat{\sigma }_{l}(\lambda ,\xi )\) and \(B=c_{N} \left( 1+|\lambda |\right) ^{-N} |\sigma |_{S_{N}^{0}}\) to conclude that the operator \(\left( \tilde{T}_{l,\lambda }\varphi \right) (x)=(2\pi )^{-d}\int _{\mathbb {R}^d}e^{ i x \xi }\hat{\sigma }_{l}(\lambda ,\xi )\hat{\varphi }(\xi )d\xi \), \(\varphi \in {{\mathscr {S}}}\left( \mathbb {R}^d\right) \) can be extended to a bounded operator on \(\displaystyle L^{p}\left( \mathbb {R}^d\right) \) so that with a suitable \(c>0\)

$$\begin{aligned} \Vert \tilde{T}_{l,\lambda }\varphi \Vert _{p} \le c c_N\left( 1+|\lambda |\right) ^{-N} |\sigma |_{S_{N}^{0}}\Vert \varphi \Vert _p,\ \varphi \in L^p\left( \mathbb {R}^d\right) . \end{aligned}$$
(29)

Then, by (27), there exists (new) \(c>0\) such that

$$\begin{aligned} \left\| T_{\sigma _l}\varphi \right\| _{p}\le c c_N\left| \sigma \right| _{S_{N}^{0}} \left\| \varphi \right\| _p\int _{\mathbb {R}^d}\left( 1+\left| \lambda \right| \right) ^{-N}d\lambda . \end{aligned}$$
(30)

Then, (30) and (26), for integer \(N > d\), imply that there exists \(c>0\), independent on l, so that

$$\begin{aligned} \int _{Q_l}\left| \left( T_{\sigma }\varphi \right) (x)\right| ^{p}dx \le c c_N^{p} \left( \left| \sigma \right| _{S_{N}^{0}}\right) ^p\left\| \varphi \right\| _{p}^{p},\ \varphi \in {{\mathscr {S}}}\left( \mathbb {R}^d\right) . \end{aligned}$$
(31)

According to [17], Lemma 10.10, for \(\varphi \in {{\mathscr {S}}}\left( \mathbb {R}^d\right) \) vanishing in a neighborhood of fixed \(x\in \mathbb {R}^d,\) we have that \((T_\sigma \varphi )(x)=(2\pi )^{-d/2}\int _{\mathbb {R}^d}K(x,x-z)\varphi (z)dz,\) where \({ K(x,z)=(2\pi )^{-d/2}\int _{\mathbb {R}^d}e^{iz \xi }\sigma (x,\xi )d\xi , x,z\in \mathbb {R}^d}\), in the sense of distributions. Following the proof of Lemma 10.10, we have that for every integer \(k >d\) there exists \(C_{k} > 0\) such that

$$\begin{aligned} \big |K(x,z)\big |\le C_{k} \left| z\right| ^{-k}\left| \sigma \right| _{S_{k}^{0}},\ z\not =0. \end{aligned}$$
(32)

Next, we construct cubes \(Q_l^{*}\) and \(Q_l^{**}\) as in the proof of Theorem 10.7 in [17]. More precisely, \(Q_l^{**}\) is the double of \(Q_l\) and \(Q_l^{*}\) has the same center l as \(Q_l\) and \(Q_l^{**}\) and \(Q_l \subset Q_l^{*} \subset Q_l^{**}\). Then \(\psi \in C_{c}^{\infty }\left( \mathbb {R}^d\right) \) is introduced so that its support is in \(Q_l^{**}\), \(0 \le \psi (x)\le 1\) and \(\psi (x)=1\) in a neighborhood of \(Q_l^*\). Then we write \(T_{\sigma }\varphi = T_{\sigma }\varphi _1+T_{\sigma }\varphi _2\), where \(\varphi _1=\psi \varphi \) and \(\varphi _2=(1-\psi )\varphi \). We introduce notation \(I_l = \int _{Q_l}|(T_{\sigma }\varphi )(x)|^p dx\) and \(J_l = \int _{Q_l}\left| \left( T_{\sigma }\varphi _2\right) (x)\right| ^p dx\). Using (31) we get

$$\begin{aligned} I_l \le c 2^p c_N^p \left( \left| \sigma \right| _{S_{N}^{0}}\right) ^p\left\| \varphi _1\right\| _{p}^{p}+2^p J_l. \end{aligned}$$
(33)

By (32) we have that for every integer \(k > d\) there is a \(C>0\) such that

$$\begin{aligned} \left| \left( T_{\sigma }\varphi _2\right) (x)\right| \le C C_{k}\left| \sigma \right| _{S_{k}^0}\int _{\mathbb {R}^d\backslash Q_l^*}\left| x-z\right| ^{-k}\left| \varphi _{2}(z)\right| dz,\ x \in Q_l, z \in \mathbb {R}^d \backslash Q_l^*. \end{aligned}$$

Next, following [17] ((10.13), (10.14) and (10.15) , Theorem 10.7) and taking \({1/p+1/q=1}\), we obtain, with a new constant \(C>0\):

$$\begin{aligned} \left| (T_{\sigma }\varphi _2)(x)\right| \le C C_{k}\left| \sigma \right| _{S_{k}^{0}}\int _{\mathbb {R}^d\backslash Q_l^*}\frac{(\mu +\left| x-z\right| )^{-k/2}\left| \varphi _2(z)\right| }{(\mu + \left| l-z\right| )^{\frac{k}{2} \left( \frac{1}{p}+\frac{1}{q}\right) }}dz, \end{aligned}$$

where \( x \in Q_l,\ z \in \mathbb {R}^d\backslash Q_l^*\), \({\mu = \sqrt{d}/2+1}\). Then, by Minkowski’s and H\(\ddot{\text{ o }}\)lder’s inequality:

$$\begin{aligned} \left( \int _{Q_l}\left| T_{\sigma }\varphi _2\right| ^p dx\right) ^{\frac{1}{p}}\le & {} C C_{k}\left| \sigma \right| _{S_{k}^{0}} \left( \int _{\mathbb {R}^d\backslash Q_l^*}\frac{dz}{(\mu + \left| l-z\right| )^{k /2}}\right) ^{\frac{1}{q}}\\&\times \left( \int _{\mathbb {R}^d\backslash Q_l^*}\frac{\left| \varphi _2(z)\right| ^{p}dz}{(\mu +\left| l-z\right| )^{k/2}}\right) ^{\frac{1}{p}} \end{aligned}$$

We conclude, with a new constant C and for \(k/2 > d\), that

$$\begin{aligned} J_l \le C C_{k}^{p}\left( \left| \sigma \right| _{S_{k}^{0}}\right) ^p\int _{\mathbb {R}^d\backslash Q_l^*}\frac{\left| \varphi _2(z)\right| ^{p}dz}{\left( \mu +\left| l-z\right| \right) ^{k/2 }}. \end{aligned}$$
(34)

By (33) and (34), there exists \(C_1>0\) such that:

$$\begin{aligned} \int _{Q_l}\left| (T_{\sigma }\varphi )(x)\right| ^p dx\!\le \!C_1 C_{k}^{p}\left( \left| \sigma \right| _{S_{k}^{0}}\right) ^p \left( \int _{Q_l^{**}}\left| \varphi (x)\right| ^p dx \!+\! \int _{\mathbb {R}^d\backslash Q_l^*}\frac{\left| \varphi _2(z)\right| ^{p}dz}{\left( \mu +\left| l-z\right| \right) ^{k /2}}\right) . \end{aligned}$$

Summing over all \(l \in \mathbb {Z}^d\), we get:

$$\begin{aligned} \int _{\mathbb {R}^d}\left| (T_{\sigma }(\varphi )(x))\right| ^p dx \le C_2(\left| \sigma \right| _{S_{k}^{0}})^p\left( 1+\sum _{l \in \mathbb {Z}^d}\frac{1}{(1+\left| l\right| )^{k/2}}\right) \int _{\mathbb {R}^d}\left| \varphi (x)\right| ^{p}dx. \end{aligned}$$

Therefore, with \(k=N >2d\), we obtain the desired estimate:

$$\begin{aligned} \int _{\mathbb {R}^d}\left| \left( T_{\sigma }(\varphi )(x)\right) \right| ^p dx \le C_N \left( \left| \sigma \right| _{S_{N}^{0}}\right) ^p \int _{\mathbb {R}^d}\left| \varphi (x)\right| ^{p}dx. \end{aligned}$$

Extending by density both sides to \(\displaystyle u \in L^p(\mathbb {R}^d)\), we obtain (25). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleksić, J., Pilipović, S. & Vojnović, I. H-distributions with unbounded multipliers. J. Pseudo-Differ. Oper. Appl. 9, 615–641 (2018). https://doi.org/10.1007/s11868-017-0200-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11868-017-0200-5

Keywords

Mathematics Subject Classification

Navigation