Skip to main content
Log in

On sets of directions determined by subsets of ℝd

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

Given E ⊂ ℝd, d ≥ 2, define

$$D(E) \equiv \left\{ {{{x - y} \over {\left| {x - y} \right|}}:x,y \in E} \right\} \subset {S^{d - 1}}$$

to be the set of directions determined by E. We prove that if the Hausdorff dimension of E is greater than d − 1, then σ(D(E)) > 0, where σ denotes the surface measure on S d−1. In the process, we prove some tight upper and lower bounds for the maximal function associated with the Radon-Nikodym derivative of the natural measure on D. This result is sharp, since the conclusion fails to hold if E is a (d − 1)-dimensional hyper-plane. This result can be viewed as a continuous analog of a recent result of Pach, Pinchasi, and Sharir ([22, 23]) on directions determined by finite subsets of ℝd. We also discuss the case when the Hausdorff dimension of E is precisely d − 1, where some interesting counter-examples have been obtained by Simon and Solomyak ([25]) in the planar case. In response to the conjecture stated in this paper, T. Orponen and T. Sahlsten ([20]) have recently proved that if the Hausdorff dimension of E equals d − 1 and E is rectifiable and is not contained in a hyper-pane, the Lebesgue measure of the set of directions is still positive. Finally, we show that our continuous results can be used to recover and, in some cases, improve the exponents for the corresponding results in the discrete setting for large classes of finite point sets. In particular, we prove that a finite point set P ⊂ ℝd, d ≥ 3, satisfying a certain discrete energy condition (Definition 3.1) determines ≳ #P distinct directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Brass, W. Moser, and J. Pach, Research Problems in Discrete Geometry, Springer, New York, 2005.

    MATH  Google Scholar 

  2. J. Bourgain, A Szemerédi type theorem for sets of positive density, Israel J. Math. 54 (1986), 307–331.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Bourgain, Hausdorff dimension and distance sets, Israel. J. Math. 87 (1994), 193–201.

    Article  MathSciNet  MATH  Google Scholar 

  4. D. Covert, B. Erdogan, D. Hart, A. Iosevich, and K. Taylor Finite point configurations, uniform distribution, intersections of fractals, and number theoretic consequences, in preparation.

  5. M. B. Erdoğan A bilinear Fourier extension theorem and applications to the distance set problem, Int. Math. Res. Not. 2005, 1411–1425.

  6. K. J. Falconer On the Hausdorff dimensions of distance sets, Mathematika 32 (1986), 206–212.

    Article  MathSciNet  Google Scholar 

  7. K. J. Falconer, The Geometry of Fractal Sets, Cambridge University Press, Cambridge, 1986.

    Google Scholar 

  8. H. Furstenberg, Y. Katznelson, and B. Weiss, Ergodic theory and configurations in sets of positive density Mathematics of Ramsey Theory, Springer, Berlin, 1990, pp. 184–198.

    Google Scholar 

  9. J. Garnett and J. Verdera, Analytic capacity, bilipschitz maps and Cantor sets, Math. Res. Lett. 10 (2003), 515–522.

    MathSciNet  MATH  Google Scholar 

  10. D. Hart, A. Iosevich, D. Koh, and M. Rudnev, Averages over hyperplanes, sum-product theory in vector spaces over finite fields and the Erdős-Falconer distance conjecture, Trans. Amer. Math. Soc. 363 (2011), 3255–3275.

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Hofmann and A. Iosevich, Circular averages and Falconer/Erdős distance conjecture in the plane for random metrics, Proc. Amer. Math. Soc. 133 (2005), 133–143.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Iosevich and I. Laba, K-distance sets, Falconer conjecture, and discrete analogs, Integers 5 (2005), A8.

    MathSciNet  Google Scholar 

  13. A. Iosevich, H. Morgan and J. Pakianathan, Sets of directions determined by subsets of vector spaces over finite fields, Integers 11 (2011), A39.

    Article  Google Scholar 

  14. A. Iosevich, M. Rudnev, and I. Uriarte-Tuero, Theory of dimension for large discrete sets and applications, arXiv:0707.1322.

  15. A. Iosevich and S. Senger, Sharpness of Falconer’s estimate in continuous and arithmetic settings, geometric incidence theorems and distribution of lattice points in convex domains, preprint, 2010.

  16. E. Landau, Vorlesungenüber Zahlentheorie, Chelsea Publishing Company, New York, 1969.

    Google Scholar 

  17. J. Matoušek, Lectures on Discrete Geometry, Springer, New York, 2002.

    MATH  Google Scholar 

  18. P. Mattila, Spherical averages of Fourier transforms of measures with finite energy: dimensions of intersections and distance sets, Mathematika 34 (1987), 207–228.

    Article  MathSciNet  MATH  Google Scholar 

  19. P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge University Press, Cambridge, 1995.

    MATH  Google Scholar 

  20. T. Orponen and T. Sahlsten, Radial projections of rectifiable sets, Ann. Acad. Sci. Fenn. Math. 36 (2011), 677–681.

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Pach, Directions in combinatorial geometry, Jahresber. Deutsch. Math.-Verein. 107 (2005), 215–225.

    MathSciNet  MATH  Google Scholar 

  22. J. Pach, R. Pinchasi, and M. Sharir, On the number of directions determined by a three-dimensional points set, J. Combin. Theory Ser. A 108 (2004), 1–16.

    Article  MathSciNet  MATH  Google Scholar 

  23. J. Pach, R. Pinchasi, and M. Sharir, Solution of Scott’s problem on the number of directions determined by a point set in 3-space, Discrete Comput. Geom. 38 (2007), 399–441.

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Pach and M. Sharir, Geometric incidences, Towards a Theory of Geometric Graphs, Amer. Math. Soc., Providence, RI, 2004, pp. 185–223.

    Google Scholar 

  25. K. Simon and B. Solomyak, Visibility for self-similar sets of dimension one in the plane, Real Anal. Exchange 32 (2006/07), 67–78.

    MathSciNet  Google Scholar 

  26. L. Székely, Crossing numbers and hard Erdős problems in discrete geometry, Combin. Probab. Comput. 6 (1997), 353–358.

    Article  MathSciNet  MATH  Google Scholar 

  27. T. Wolff, Decay of circular means of Fourier transforms of measures, Internat. Math. Res. Not. 1999, 547–567.

  28. T. Wolff, Recent work connected with the Kakeya problem, Prospects in Mathematics, Amer. Math. Soc., Providence, RI, 1999, pp. 129–162.

    Google Scholar 

  29. T. Ziegler, Nilfactors ofd actions and configurations in sets of positive upper density inm, J. Anal. Math. 99 (2006), 249–266.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Iosevich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iosevich, A., Mourgoglou, M. & Senger, S. On sets of directions determined by subsets of ℝd . JAMA 116, 355–369 (2012). https://doi.org/10.1007/s11854-012-0010-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-012-0010-x

Keywords

Navigation