Advertisement

JOM

, Volume 70, Issue 6, pp 929–937 | Cite as

An Overview of the Effects of Alloying Elements on the Properties of Lightweight Fe-(15–35) Mn-(5–12) Al-(0.3–1.2) C Steel

  • Jia Xing
  • Yinghui Wei
  • Lifeng Hou
Shaping & Forming of Advanced High Strength Steels
  • 175 Downloads

Abstract

In this review, the influences of alloying elements on the phase constitution, density, and stacking fault energy of Fe-(15–35) Mn-(5–12) Al-(0.3–1.2) C lightweight steel are discussed. The mechanical properties of austenite single-phase and austenite–ferrite dual-phase Fe-Mn-Al-C steels processed by different procedures are also statistically analyzed. The austenite single-phase steel was found to possess superior strength and plasticity. Three reasonable explanations for the mechanism of plastic deformation are presented, namely, shear band-induced plasticity, microband-induced plasticity, and slip band refinement-induced plasticity.

Notes

Acknowledgements

We thank the National Natural Science Foundation of China (Grant No. 51374151), Key Scientific Research Project in Shanxi Province (MC2014-03).

References

  1. 1.
    R. Rana, C. Lahaye, and R.K. Ray, JOM 66, 1734 (2014).CrossRefGoogle Scholar
  2. 2.
    O. Grässel, G. Frommeyer, C. Derder, and H. Hofmann, J. Phys. IV 07, 383 (1997).Google Scholar
  3. 3.
    Lili Ma, Yinghui Wei, L. Hou, and B. Yan, J. Iron. Steel Res. Int. 21, 749 (2014).CrossRefGoogle Scholar
  4. 4.
    J.E. Jin and Y.K. Lee, Acta Mater. 60, 1680 (2012).CrossRefGoogle Scholar
  5. 5.
    J. Yoo, B. Kim, Y. Park, and C. Lee, J. Mater. Sci. 50, 279 (2015).CrossRefGoogle Scholar
  6. 6.
    Y.S. Zhang, X.M. Zhu, and S.H. Zhong, Corros. Sci. 46, 853 (2004).CrossRefGoogle Scholar
  7. 7.
    G. Frommeyer and U. Brux, Steel Res. Int. 77, 627 (2006).CrossRefGoogle Scholar
  8. 8.
    J.D. Yoo and K.T. Park, Mater. Sci. Eng. A 496, 417 (2008).CrossRefGoogle Scholar
  9. 9.
    E. Welsch, D. Ponge, S.M. Hafez Haghighat, S. Sandlöbes, P. Choi, M. Herbig, S. Zaefferer, and D. Raabe, Acta Mater. 116, 188 (2016).CrossRefGoogle Scholar
  10. 10.
    Z.Q. Wu, H. Ding, X.H. An, D. Han, and X.Z. Liao, Mater. Sci. Eng. A 639, 187 (2015).CrossRefGoogle Scholar
  11. 11.
    C.Y. Chao and C.-H.L. Chih-Yeh, Mater. Trans. 43, 2635 (2002).CrossRefGoogle Scholar
  12. 12.
    K. Lee, S.-J. Park, J. Moon, J.-Y. Kang, T.-H. Lee, and H.N. Han, Scr. Mater. 124, 193 (2016).CrossRefGoogle Scholar
  13. 13.
    K. Ishida, H. Ohtani, N. Satoh, R. Kainuma, and T. Nishizawa, ISIJ Int. 30, 680 (1990).CrossRefGoogle Scholar
  14. 14.
    J. Moon, S.-J. Park, J.H. Jang, T.-H. Lee, C.-H. Lee, H.-U. Hong, D.-W. Suh, S.H. Kim, H.N. Han, and B.H. Lee, Scr. Mater. 127, 97 (2017).CrossRefGoogle Scholar
  15. 15.
    K. Sato, K. Tagawa, and Y. Inoue, Metall. Trans. A 21, 5 (1990).CrossRefGoogle Scholar
  16. 16.
    C.W. Kim, S.I. Kwon, B.H. Lee, J.O. Moon, S.J. Park, J.H. Lee, and H.U. Hong, Mater. Sci. Eng. A 673, 108 (2016).CrossRefGoogle Scholar
  17. 17.
    W. Song, W. Zhang, J. von Appen, R. Dronskowski, and W. Bleck, Steel Res. Int. 86, 1161 (2015).CrossRefGoogle Scholar
  18. 18.
    H. Kim, D.-W. Suh, and N.J. Kim, Sci. Technol. Adv. Mater. 14, 014205 (2013).CrossRefGoogle Scholar
  19. 19.
    A. Saeed-Akbari, J. Imlau, U. Prahl, and W. Bleck, Metall. Mater. Trans. A 40, 3076 (2009).CrossRefGoogle Scholar
  20. 20.
    A. Dumay, J.P. Chateau, S. Allain, S. Migot, and O. Bouaziz, Mater. Sci. Eng. A 483–484, 184 (2008).CrossRefGoogle Scholar
  21. 21.
    S. Allain, J.P. Chateau, O. Bouaziz, S. Migot, and N. Guelton, Mater. Sci. Eng. A 387–389, 158 (2004).CrossRefGoogle Scholar
  22. 22.
    X. Tian, H. Li, and Y. Zhang, J. Mater. Sci. 43, 6214 (2008).CrossRefGoogle Scholar
  23. 23.
    A. Inoue, T. Minemura, A. Kitamura, and T. Masumoto, Metall. Trans. A 12A, 1041 (1981).CrossRefGoogle Scholar
  24. 24.
    P.C.J. Gallagher, Metall. Trans. 1, 2429 (1970).Google Scholar
  25. 25.
    H. Ding, D. Han, J. Zhang, Z. Cai, Z. Wu, and M. Cai, Mater. Sci. Eng. A 652, 69 (2016).CrossRefGoogle Scholar
  26. 26.
    K.-T. Park, Scr. Mater. 68, 375 (2013).CrossRefGoogle Scholar
  27. 27.
    K.-T. Park, S.W. Hwang, C.Y. Son, and J.-K. Lee, JOM 66, 1828 (2014).CrossRefGoogle Scholar
  28. 28.
    K.-T. Park, K.G. Jin, S.H. Han, S.W. Hwang, K. Choi, and C.S. Lee, Mater. Sci. Eng. A 527, 3651 (2010).CrossRefGoogle Scholar
  29. 29.
    W.S. Yang and C.M. Wan, J. Mater. Sci. 25, 1821 (1990).CrossRefGoogle Scholar
  30. 30.
    J. Kim, S.-J. Lee, and B.C.D. Cooman, Scr. Mater. 65, 363 (2011).CrossRefGoogle Scholar
  31. 31.
    F. Yang, R. Song, Y. Li, T. Sun, and K. Wang, Mater. Des. 76, 32 (2015).CrossRefGoogle Scholar
  32. 32.
    S.C. Tjong and S.M. Zhu, Mater. Trans. 38, 112 (1997).CrossRefGoogle Scholar
  33. 33.
    S.W. Hwang, J.H. Ji, E.G. Lee, and K.-T. Park, Mater. Sci. Eng. A 528, 5196 (2011).CrossRefGoogle Scholar
  34. 34.
    A. Imandoust, A. Zarei-Hanzaki, S. Heshmati-Manesh, S. Moemeni, and P. Changizian, Mater. Des. 53, 99 (2014).CrossRefGoogle Scholar
  35. 35.
    Z. Zhang, Y. Hao, L. De-ping, L. Zhang, Z. Huang, and C. Guang, J. Iron Steel Res. Int. 23, 963 (2016).CrossRefGoogle Scholar
  36. 36.
    J.D. Yoo, S.W. Hwang, and K.-T. Park, Mater. Sci. Eng. A 508, 234 (2009).CrossRefGoogle Scholar
  37. 37.
    W.K. Choo, J.H. Kim, and J.C. Yoon, Acta Mater. 45, 4877 (1997).CrossRefGoogle Scholar
  38. 38.
    S.H. Kim, H. Kim, and N.J. Kim, Nature 518, 77 (2015).CrossRefGoogle Scholar
  39. 39.
    J.D. Yoo, S.W. Hwang, and K.T. Park, Metall. Mater. Trans. A 40, 1520 (2009).CrossRefGoogle Scholar
  40. 40.
    H. Springer and D. Raabe, Acta Mater. 60, 4950 (2012).CrossRefGoogle Scholar
  41. 41.
    A. Etienne, V. Massardier-Jourdan, S. Cazottes, X. Garat, M. Soler, I. Zuazo, and X. Kleber, Metall. Mater. Trans. A 45, 324 (2013).CrossRefGoogle Scholar
  42. 42.
    M.-S. Kim and Y.-B. Kang, CALPHAD 51, 89 (2015).CrossRefGoogle Scholar
  43. 43.
    K. Lee, S.-J. Park, J. Lee, J. Moon, J.-Y. Kang, D.-I. Kim, J.-Y. Suh, and H.N. Han, J. Alloys Compd. 656, 805 (2016).CrossRefGoogle Scholar
  44. 44.
    W.J. Lu, X.F. Zhang, and R.S. Qin, Mater. Lett. 138, 96 (2015).CrossRefGoogle Scholar
  45. 45.
    P. Cizek, Mater. Sci. Eng. A 324, 214 (2002).CrossRefGoogle Scholar
  46. 46.
    V. Gerold and H.P. Karnthaler, Acta Metall. 37, 2177 (1989).CrossRefGoogle Scholar
  47. 47.
    T. Steffens, C. Schwink, A. Korner, and H.P. Karnthaler, Philos. Mag. A 56, 161 (1987).CrossRefGoogle Scholar
  48. 48.
    G. Saller, K. Spiradek-Hahn, C. Scheu, and H. Clemens, Mater. Sci. Eng. A 427, 246 (2006).CrossRefGoogle Scholar
  49. 49.
    B. Bay, Mater. Sci. Eng. A 113, 385 (1989).CrossRefGoogle Scholar
  50. 50.
    D. Kuhlmann-Wilsdorf, Mater. Sci. Eng. A 113, 1 (1989).CrossRefGoogle Scholar
  51. 51.
    A. Korbel, J.D. Embury, M. Hatherly, P.L. Martin, and H.W. Erbsloh, Acta Metall. 34, 1999 (1986).CrossRefGoogle Scholar
  52. 52.
    J.C. Huang and G.T. Gray, Acta Metall. 37, 3335 (1989).CrossRefGoogle Scholar
  53. 53.
    C. Haase, C. Zehnder, T. Ingendahl, A. Bikar, F. Tang, B. Hallstedt, W. Hu, W. Bleck, and D.A. Molodov, Acta Mater. 122, 332 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuanChina
  2. 2.Shanxi Institute of TechnologyYangquanChina

Personalised recommendations