Skip to main content
Log in

Review of Manganese Processing for Production of TRIP/TWIP Steels, Part 1: Current Practice and Processing Fundamentals

  • Characterization of Advanced High Strength Steels for Automobiles
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The increasing demand for high-performance steel alloys has led to development of transformation-induced plasticity (TRIP) and twinning-induced plasticity (TWIP) alloys over the past three decades. These alloys offer exceptional combinations of high tensile strength and ductility. Thus, the mechanical behavior of these alloys has been a subject of significant work in recent years. However, the challenge of economically providing Mn in the quantity and purity required by these alloys has received considerably less attention. To enable commercial implementation of ultrahigh-Mn alloys, it is desirable to lower the high material costs associated with their production. Therefore, the present work reviews Mn processing routes in the context of the chemical requirements of these alloys. The aim of this review is to assess the current state of the art regarding reduction of manganese ores and provide a comprehensive reference for researchers working to mitigate material processing costs associated with Mn production. The review is presented in two parts: Part 1 introduces TRIP and TWIP alloys, current industrial practice, and pertinent thermodynamic fundamentals; Part 2 addresses available literature regarding reduction of Mn ores and oxides, and seeks to identify opportunities for future process development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from Bouaziz et al.,7 Keeler and Kimchi,15 Lee and Han,18 and Hernandez et al.19

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Reproduced with permission from Ref. 65

Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. RPA, Manganese, The Global PictureA Socio Economic Assessment, report for the International Manganese Institute (Loddon, Norfolk, UK, 2015).

  2. The International Manganese Institute, 2013 Public Annual Market Research Report (2013).

  3. J.E. Post, Proc. Natl. Acad. Sci. 96, 3447 (1999).

    Article  Google Scholar 

  4. R.H. Eric, Production of Ferroalloys, 1st ed. (New York: Elsevier, 2014).

    Google Scholar 

  5. J.M. Cullen, J.M. Allwood, and M.D. Bambach, Environ. Sci. Technol. 46, 13048 (2012).

    Article  Google Scholar 

  6. B.C. De Cooman, L. Chen, H.S. Kim, Y. Estrin, S.K. Kim, and H. Voswinckel, Microstructure and Texture in Steels, chap. 10, eds. A. Haldar, S. Suwas, and D. Bhattacharjee (London: Springer, 2009).

  7. O. Bouaziz, S. Allain, C.P. Scott, P. Cugy, and D. Barbier, Curr. Opin. Solid State Mater. Sci. 15, 141 (2011).

    Article  Google Scholar 

  8. O. Bouaziz, H. Zurob, and M. Huang, Steel Res. Int. 84, 937 (2013).

    Google Scholar 

  9. L. Chen, Y. Zhao, and X. Qin, Acta Metall. Sin. (Engl. Lett.) 26, 1 (2013).

    Article  Google Scholar 

  10. K. Chin, W.T. Cho, S.K. Kim, Y. Kim, T.J. Song, and T. Kim, in METEC 2nd ESTAD (2015), pp. 65–68.

  11. B.C. De Cooman, K. Chin, and J. Kim, New Trends and Developments in Automotive System Engineering (InTech, 2011). https://cdn.intechopen.com/pdfs-wm/13349.pdf.

  12. B.C. De Cooman, O. Kwon, and K.-G. Chin, Mater. Sci. Technol. 28, 513 (2012).

    Article  Google Scholar 

  13. O. Grässel, L. Krüger, G. Frommeyer, and L.W. Meyer, Int. J. Plast. 16, 1391 (2000).

    Article  Google Scholar 

  14. W. Li, B. Xu, L. Hou, and P. Han, Ironmak. Steelmak. 38, 540 (2011).

    Article  Google Scholar 

  15. Y.-K. Lee and J. Han, Mater. Sci. Technol. 31, 843 (2016).

    Article  Google Scholar 

  16. D.K. Matlock, J.G. Speer, E. De Moor, and P.J. Gibbs, JESTECH 15, 1 (2012).

    Google Scholar 

  17. Z.H. Cai, H. Ding, X. Xue, and Q.B. Xin, Mater. Sci. Eng. A 560, 388 (2013).

    Article  Google Scholar 

  18. V. Hernandez, S. Mostaghel, S. Ge, C. Harris, and M. Cramer, in AISTech 2016 Proceedings 775 (2016).

  19. S. Keeler and M. Kimchi, Advanced High-Strength Steels Application Guidelines V5 (WorldAutoSteel, 2015). http://www.worldautosteel.org/about/.

  20. J.D. Clayton, Nonlinear Mechanics of Crystals (Solid Mechanics and Its Applications) (Berlin: Springer, 2010).

    Google Scholar 

  21. D.T. Pierce, J.A. Jiménez, J. Bentley, D. Raabe, and J.E. Wittig, Acta Mater. 100, 178 (2015).

    Article  Google Scholar 

  22. O. Grässel, G. Frommeyer, C. Derder, and H. Hofmann, Le J. Phys. IV 7, 383 (1997).

    Google Scholar 

  23. D.V. Edmonds, K. He, F.C. Rizzo, B.C. De Cooman, D.K. Matlock, and J.G. Speer, Mater. Sci. Eng. A 438–440, 25 (2006).

    Article  Google Scholar 

  24. S. Lee, Y. Estrin, and B.C. De Cooman, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 44, 3136 (2013).

    Article  Google Scholar 

  25. J.G. Speer, E. De Moor, and A.J. Clarke, Mater. Sci. Technol. 31, 3 (2015).

    Article  Google Scholar 

  26. L. Chen, H.-S. Kim, S.-K. Kim, and B.C. De Cooman, ISIJ Int. 47, 1804 (2007).

    Article  Google Scholar 

  27. L.A. Dobrzański and W. Borek, J. Achiev. Mater. Manuf. Eng. 55, 230 (2012).

    Google Scholar 

  28. B. Gumus, B. Bal, G. Gerstein, D. Canadinc, H.J. Maier, F. Guner, and M. Elmadagli, Mater. Sci. Eng. A 648, 104 (2015).

    Article  Google Scholar 

  29. C. Haase, M. Kühbach, L.A. Barrales-Mora, S.L. Wong, F. Roters, D.A. Molodov, and G. Gottstein, Acta Mater. 100, 155 (2015).

    Article  Google Scholar 

  30. H. Idrissi, K. Renard, D. Schryvers, and P.J. Jacques, Scr. Mater. 63, 961 (2010).

    Article  Google Scholar 

  31. M. Jabłońska, G. Niewielski, and R. Kawalla, Solid State Phenom. 212, 87 (2013).

    Article  Google Scholar 

  32. P. Lan and J. Zhang, Steel Res. Int. 87, 250 (2016).

    Article  Google Scholar 

  33. D.R. Steinmetz, T. Jäpel, B. Wietbrock, P. Eisenlohr, I. Gutierrez-Urrutia, A. Saeed-Akbari, T. Hickel, F. Roters, and D. Raabe, Acta Mater. 61, 494 (2013).

    Article  Google Scholar 

  34. R. Ueji, N. Tsuchida, D. Terada, N. Tsuji, Y. Tanaka, A. Takemura, and K. Kunishige, Scr. Mater. 59, 963 (2008).

    Article  Google Scholar 

  35. K.N. Vdovin, N.A. Feoktistov, and D.A. Gorlenko, Mater. Sci. Forum 870, 339 (2016).

    Article  Google Scholar 

  36. A.S. Hamada, L.P. Karjalainen, and M.C. Somani, Mater. Sci. Eng. A 467, 114 (2007).

    Article  Google Scholar 

  37. A. Kwiatkowski da Silva, G. Leyson, M. Kuzmina, D. Ponge, M. Herbig, S. Sandlöbes, B. Gault, J. Neugebauer, and D. Raabe, Acta Mater. 124, 305 (2017).

    Article  Google Scholar 

  38. I. Tsukatani, S. Hashimoto, and T. Inoue, ISIJ Int. 31, 992 (1991).

    Article  Google Scholar 

  39. L.H. Wang, D. Tang, H.T. Jiang, J. Bin Liu, and Y. Chen, Adv. Mater. Res. 399–401, 254 (2011).

    Google Scholar 

  40. S. Chatterjee, M. Murugananth, and H.K.D.H. Bhadeshia, Mater. Sci. Technol. 23, 819 (2007).

    Article  Google Scholar 

  41. B.C. De Cooman, Curr. Opin. Solid State Mater. Sci. 8, 285 (2004).

    Article  Google Scholar 

  42. P.J. Jacques, E. Girault, A. Mertens, B. Verlinden, J. Van Humbeeck, and F. Delannay, ISIJ Int. 41, 1068 (2001).

    Article  Google Scholar 

  43. P. Von Schweinichen, Z. Chen, D. Senk, and A. Lob, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 44, 5416 (2013).

    Article  Google Scholar 

  44. H. Ding, H. Ding, C. Lin Qiu, Z. You Tang, J. Min Zeng, and P. Yang, J. Iron Steel Res. Int. 18, 36 (2011).

    Article  Google Scholar 

  45. G. Gigacher, R. Pierer, J. Wiener, and C. Bernhard, Adv. Eng. Mater. 8, 1096 (2006).

    Article  Google Scholar 

  46. M. Daamen, B. Wietbrock, S. Richter, and G. Hirt, Steel Res. Int. 82, 70 (2011).

    Article  Google Scholar 

  47. T. Taylor, G. Fourlaris, and P. Evans, Mater. Sci. Technol. 33, 487 (2016).

    Article  Google Scholar 

  48. J. Park, J.-S. Kim, M. Kang, S.S. Sohn, W.T. Cho, H.S. Kim, and S. Lee, Sci. Rep. 7, 40231 (2017).

    Article  Google Scholar 

  49. M. Ha, W.S. Kim, H.K. Moon, B.J. Lee, and S. Lee, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 39A, 1087 (2008).

    Article  Google Scholar 

  50. SMS Group Newsletter, Belt Casting Technology for Innovative Steel Grades (2016), p. 12. https://www.sms-group.com/press-media/sms-newsletter/.

  51. J.-B. Nam, China Automot. Steel Conf. (Guangzhou: WorldSteel/CISA, 2013).

  52. BaoSteel, BaoSteel Automotive Advanced High Strength Steels (2014).

  53. ArcellorMittal, Steels for Cold Stamping: Fortiform ® (2016). http://sections.arcelormittal.com/library/product-catalogues.html.

  54. USS POSCO, Advanced High Strength Steel (2013).

  55. T. Christie, Mineral Commodity Report 7Manganese (2017). https://www.nzpam.govt.nz/doing-business/investing-minerals/resources-potential/.

  56. D.B. Wellbeloved, P.M. Craven, and J.W. Waudby, Ullmann's Encyclopedia of Industrial Chemistry (2000). https://doi.org/10.1002/14356007.a16_077.

  57. M. Tangstad, Manganese Ferroalloys Technology, 12th ed. (New York: Elsevier, 2013).

    Google Scholar 

  58. G. Hils, A. Newirkowez, M. Kroker, U. Grethe, R. Schmidt-Jürgensen, J. Kroos, and K.-H. Spitzer, Steel Res. Int. 86, 411 (2015).

    Article  Google Scholar 

  59. P.K. Sen, Deep-Sea Mining: Resource Potential, Technical and Environmental Considerations, ed. R. Sharma (Cham: Springer International, 2017), pp. 395–422. https://doi.org/10.1007/978-3-319-52557-0.

    Chapter  Google Scholar 

  60. J.R. Donald and C. McLachlan, in 56th Conf. Metall. (Vancouver, Canada, 2017).

  61. L.A. Corathers, 2013 Minerals Yearbook (US Geological Survey, 2013), pp. 1–21.

  62. S. Petersen, A. Krätschell, and M.D. Hannington, EAGE/DGG Work. Deep Miner. Explor. (2016).

  63. V. Marchig, Cosmo-and Geochemistry (Berlin, Heidelberg: Springer, 1981), pp. 99–126.

  64. American Metal Market, AMM Monthly Averages September 2015 Nonferrous Scrap Prices (2015).

  65. M. Tangstad, Manganese Ferroalloys Technology, 12th ed. (New York: Elsevier, 2013).

    Google Scholar 

  66. W. Zhang and C.Y. Cheng, Hydrometallurgy 89, 137 (2007).

    Article  Google Scholar 

  67. The International Manganese Institute, IMnI Statistics 2017 (2017).

  68. International Manganese Institute, IMnI Annual Review 2016 (2016).

  69. J. Madias, in AISTech: Iron Steel Technol. Conf. Proc. (2011), pp. 401–412.

  70. R. Sen, Production of ferro Manganese Through Blast Furnace Route, Ferro Alloy Industries in the Liberalised Economy Conference, eds. A.K. Vaish, S.D. Singh, N.G. Goswami, and P. Ramachandrarao (Jamshedpur: NML, 1997), pp. 83–91.

  71. S.E. Olsen and T. Lindstad, Electr. Furn. Conf. 205 (2002).

  72. S. Olsen, M. Tangstad, and T. Lindstad, Production of Manganese Ferroalloys (Trondheim: Tapir Akademisk Forlag, 2007).

    Google Scholar 

  73. M. Tangstad and S.E. Olsen, in INFACON 7 (1995), pp. 621–630.

  74. P. Mackey, E. Grimsey, R. Jones, and G. Brooks, eds., Celebrating the Megascale: Proceedings of the Extraction and Processing Division Symposium on Pyrometallurgy in Honor of David G.C. Robertson (Springer, 2016).

  75. M. Kalenga, P. Xiaowei, and M. Tangstad, in 13th Int. Ferroalloys Congr. (2013), pp. 647–654.

  76. S.E. Olsen and M. Tangstad, INFACON X: Transformation through Technology (2004), p. 231.

  77. W. Zhang and C.Y. Cheng, Hydrometallurgy 89, 160 (2007).

    Article  Google Scholar 

  78. W. Zhang and C.Y. Cheng, Hydrometallurgy 89, 178 (2007).

    Article  Google Scholar 

  79. J. Lu, D. Dreisinger, and T. Glück, Hydrometallurgy 161, 45 (2016).

    Article  Google Scholar 

  80. Y. Gao, M. Olivas-Martinez, H.Y. Sohn, H.G. Kim, and C.W. Kim, Metall. Mater. Trans. B 43, 1 (2012).

    Google Scholar 

  81. T. Sharma, Int. J. Miner. Process. 35, 191 (1992).

    Article  Google Scholar 

  82. S. Xiao, W. Liu, and L. Gao, Ionics (Kiel). 8 (2016).

  83. A.J. Godsell and D.J. Fray, Metall. Trans. B 21, 217 (1990).

    Article  Google Scholar 

  84. D.R. Sadoway, J. Mater. Res. 10, 487 (1995).

    Article  Google Scholar 

  85. A. Allanore, L. Yin, and D.R. Sadoway, Nature 497, 353 (2013).

    Article  Google Scholar 

  86. K. Ohler-Martins and D. Senk, Steel Res. Int. 79, 811 (2008).

    Article  Google Scholar 

  87. K. Ohler-Martins, E.J. Njamen, D. Senk, H.-W. Gudenau, and J.C. D’Abreau, in 3rd Int. Meet. Ironmak. (2008), pp. 687–700.

  88. Z. Georgeou, C.F. Redeker, J. Schottler, R.-H. Gronebaum, A. Redenius, J. Kroos, A. Newirkowez, D. Rohrberg, J. Wendelstorf, K.-H. Spitzer, and R. Nystrom, Cost-Efficient Metallurgy for the Production of Novel Ultra High- Strength Deep-Drawable Steel Grades with High Mn Contents from 10 to 25 Wt. % by Using the Eaf Steelmaking Route (2010). https://doi.org/10.2777/91273.

  89. K.-H. Spitzer and C. Redeker, EP2242862 (2008).

  90. M. Kirschen, K. Badr, and H. Pfeifer, Energy 36, 6146 (2011).

    Article  Google Scholar 

  91. K.L. Berg and S.E. Olsen, Metall. Mater. Trans. B 31, (2000).

  92. A.A. El-Geassy, M.I. Nasr, M.A. Yousef, M.H. Khedr, and M. Bahgat, Ironmak. Steelmak. 27, 117 (2000).

    Article  Google Scholar 

  93. Y.B. Gao, H.G. Kim, and H.Y. Sohn, Trans. Inst. Min. Metall. Sect. C Miner. Process. Extr. Metall. 121, 109 (2012).

    Article  Google Scholar 

  94. R.J. Ishak and T. Lindstad, in Metall. Mater. Process. Princ. Technol. (2003), pp. 63–73.

  95. P. Perreault and G.S. Patience, Chem. Eng. J. 295, 227 (2016).

    Article  Google Scholar 

  96. M. Tangstad, M. Sibony, S. Wasb, and R. Tronstad, in INFACON 9 (2001), pp. 202–207.

  97. K. Turkova, D. Slizovskiy, and M. Tangstad, ISIJ Int. 54, 1204 (2014).

    Article  Google Scholar 

  98. M. Zaki, M. Hasan, L. Pasupulety, and K. Kumari, Thermochim. Acta 311, 97 (1998).

    Article  Google Scholar 

  99. N. Anacleto, O. Ostrovski, and S. Ganguly, ISIJ Int. 44, 1615 (2004).

    Article  Google Scholar 

  100. A. Bhalla and R.H. Eric, in Fourteenth Int. Ferroalloys Congr. (Kiev, Ukraine, 2015), pp. 461–469.

  101. B. Khoshandam, R.V. Kumar, and E. Jamshidi, Can. Metall. Q. 46, 365 (2007).

    Article  Google Scholar 

  102. E.R. Stobbe, B.A. de Boer, and J.W. Geus, Catal. Today 47, 161 (1999).

    Article  Google Scholar 

  103. R. Kononov, O. Ostrovski, and S. Ganguly, in INFACON XI (New Delhi, India, 2007), pp. 256–267.

  104. R. Kononov, O. Ostrovski, and S. Ganguly, Metall. Mater. Trans. B 39, 662 (2008).

    Article  Google Scholar 

  105. R. Kononov, O. Ostrovski, and S. Ganguly, ISIJ Int. 49, 1099 (2009).

    Article  Google Scholar 

  106. R. Kononov, O. Ostrovski, and S. Ganguly, ISIJ Int. 49, 1107 (2009).

    Article  Google Scholar 

  107. R. Kononov, O. Ostrovski, and S. Ganguly, ISIJ Int. 49, 1115 (2009).

    Article  Google Scholar 

  108. M.I. Zaki, M.A. Hasan, L. Pasupulety, and K. Kumari, Thermochim. Acta 303, 171 (1997).

    Article  Google Scholar 

  109. R.P. Westerdahl and P.J. Leader, Inorg. Nucl. Chem. Lett. 5, 199 (1969).

    Article  Google Scholar 

  110. C. Naganna, Proc. Indian Acad. Sci. Sect. A 16 (1963).

  111. K. Terayama and M. Ikeda, Trans. Japan Inst. Met. 24, 754 (1983).

    Article  Google Scholar 

  112. A. Roine, HSC Chemistry 6.0—User’s Guide (Poir: Outokumpa Research Oy, 2006).

    Google Scholar 

  113. C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon, A.D. Pelton, S. Petersen, C. Robelin. J. Sangster, and M.-A. Van Ende, Calphad 54, 35 (2016).

    Article  Google Scholar 

  114. O. Ostrovski and G. Zhang, AIChE J. 52, 300 (2006).

    Article  Google Scholar 

  115. S.R. Shatynski, Oxid. Met. 13, 105 (1979).

    Article  Google Scholar 

  116. D. Djurovic, B. Hallstedt, J. Von Appen, and R. Dronskowski, CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 34, 279 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the Natural Science and Engineering Research Council of Canada (NSERC, STPGP463252-14). Additional thanks go to ArcelorMittal Dofasco, Stelco, Praxair, and Hatch Ltd. for in-kind support and technical expertise.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Elliott.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 451 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elliott, R., Coley, K., Mostaghel, S. et al. Review of Manganese Processing for Production of TRIP/TWIP Steels, Part 1: Current Practice and Processing Fundamentals. JOM 70, 680–690 (2018). https://doi.org/10.1007/s11837-018-2769-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-2769-4

Navigation