Skip to main content
Log in

Effects of Two-stage Heat Treatment on Delayed Coke and Study of Their Surface Texture Characteristics

  • Published:
JOM Aims and scope Submit manuscript

Abstract

In the present study, surface texture features and chemical properties of two types of cokes, made from coal tar by either 1-stage heat treatment or 2-stage heat treatment, were researched. The relationship between surface texture characteristics and the chemical properties was identified through molecular weight distribution, insolubility of coal tar, weight loss with temperature increase, coking yield, and polarized light microscope analysis. Rapidly cleared anisotropy texture in cokes was observed in accordance with the coking temperature rise. Quinoline insolubility and toluene insolubility of coal tar increased with a corresponding increases in coking temperature. In particular, the cokes produced by the 2-stage heat treatment (2S-C) showed surface structure of needle cokes at a temperature approximately 50°C lower than the 1-stage heat treatment (1S-C). Additionally, the coking yield of 2S-C increased by approximately 14% in comparison with 1S-C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reprinted with permission from Ref. 4

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A.T.U. Nugrahenny, S.-K.K. Jiyoung Kim, D.-H. Peck, S.-H. Yoon, and D.-H. Jung, Carbon Lett. 15, 38 (2014).

    Article  Google Scholar 

  2. W. Qiao, S.-H. Yoon, and I. Mochida, Energy Fuels 20, 1680 (2006).

    Article  Google Scholar 

  3. H. Marsh and R. Menendez, Fuel Process. Technol. 20, 269 (1988).

    Article  Google Scholar 

  4. I.V. Moskalev, D.M. Kiselkov, V.N. Strelnikov, V.A. Valtsifer, A.P. Petrovykh, A.V. Petrov, and N.Y. Beilina, Coke Chem. 57, 202 (2014).

    Article  Google Scholar 

  5. A. Guo, X. Lin, D. Liu, X. Zhang, and Z. Wang, Fuel Process. Technol. 104, 332 (2012).

    Article  Google Scholar 

  6. Q. Lin, W. Su, and Y. Xie, J. Anal. Appl. Pyrolysis 86, 8 (2009).

    Article  Google Scholar 

  7. X. Cheng, Q. Zha, J. Zhong, and X. Yang, Fuel 88, 2188 (2009).

    Article  Google Scholar 

  8. L. Edwards, JOM 67, 308 (2015).

    Article  Google Scholar 

  9. X. Cheng, G. Li, Y. Peng, S. Song, X. Shi, J. Wu, J. Xie, M. Zhou, and G. Hu, Chem. Technol. Fuels Oils 48, 349 (2012).

    Article  Google Scholar 

  10. J.S. Fielda and M.V. Swain, Carbon 34, 1357 (1996).

    Article  Google Scholar 

  11. D.L. Trimm, Chem. Eng. Process. 18, 137 (1984).

    Article  Google Scholar 

  12. Y. Gao, H. Song, and X. Chen, J. Mater. Sci. 38, 2209 (2003).

    Article  Google Scholar 

  13. K. Fujimoto, M. Sato, M. Yamada, R. Yamashita, and K. Shibata, Carbon 24, 397 (1986).

    Article  Google Scholar 

  14. K. Shen, Z.-H. Huang, W. Shen, J. Yang, G. Yang, S. Yu, and F. Kang, Carbon 94, 18 (2015).

    Article  Google Scholar 

  15. K. Shen, Z.-H. Huang, J. Yang, W. Shen, and F. Kang, Carbon 49, 3200 (2011).

    Article  Google Scholar 

  16. K. Shen, Z.-H. Huang, J. Yang, G. Yang, W. Shen, and F. Kang, Carbon 58, 238 (2013).

    Article  Google Scholar 

  17. ISO 6791-1981, Carbonaceous Materials for the Production of AluminiumPitch for ElectrodesDetermination of Contents of Quinoline-Insoluble Material, (Geneva: International Organization for Standardization, 1981).

  18. ISO 6376-1980, Carbonaceous Materials for the Production of AluminiumPitch for ElectrodesDetermination of Content of Toluene-Insoluble Material, (Geneva: International Organization for Standardization, 1980).

  19. N. Fukuda, K. Nagayama, and M. Honma, Kawasaki Steel Tech. Rep 28, B6-2527 (1993).

    Google Scholar 

  20. F. Karaca, T. Morgan, A. George, I. Bull, A. Herod, M. Millan, and R. Kandiyoti, Rapid Commun. Mass Spectrom. 23, 2087 (2009).

    Article  Google Scholar 

  21. W.F. Edwards, L. Jin, and M.C. Thies, Carbon 41, 2761 (2003).

    Article  Google Scholar 

  22. B.-J. Kim, T. Kotegawa, Y. Eom, J. An, I.-P. Hong, O. Kato, K. Nakabayashi, J. Miyawaki, B.C. Kim, I. Mochida, and S.-H. Yoon, Carbon 99, 649 (2016).

    Article  Google Scholar 

  23. B.-J. Kim, Y. Eom, O. Kato, J. Miyawaki, B.C. Kim, I. Mochida, and S.-H. Yoon, Carbon 77, 747 (2014).

    Article  Google Scholar 

  24. R.K. Aggarwal, G. Bhatia, O.P. Bahl, and N. Punjabi, J. Mater. Sci. 35, 5437 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by Research and Development Program (Development of powder molding binder pitch and molded product for high density carbon) of the Korea Institute of Energy Research (KIER) (B6-2527).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doo-Hwan Jung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Im, US., Kim, J., Lee, S.H. et al. Effects of Two-stage Heat Treatment on Delayed Coke and Study of Their Surface Texture Characteristics. JOM 69, 2460–2466 (2017). https://doi.org/10.1007/s11837-016-2104-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-2104-x

Navigation