Skip to main content
Log in

Resistance to greenbugs in the sorghum nested association mapping population

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

The greenbug, Schizaphis graminum, is a serious pest of sorghum (Sorghum bicolor). For the past several decades, resistant sorghum hybrids have been used to control greenbug populations. However, the durability of plant resistance is frequently challenged by evolution of new greenbug biotypes, and there is a continuous need for screening of resistant germplasm for its effective management in the field. Natural variation in sorghum plants/populations provides distinct approaches to identify novel sources of resistance against greenbugs. In this study, we used the recently developed sorghum nested association mapping (NAM) population parental lines to understand sources of sorghum resistance to greenbugs. Using choice and no-choice assays, we have identified SC265 and Segaolane as the resistant and susceptible lines, respectively, to greenbugs compared to the wild-type plants. The Electrical Penetration Graph (EPG) analysis revealed that the greenbugs spent significantly lesser time in the xylem and sieve element phases while feeding on the resistant NAM parental line, SC265, compared to the susceptible (Segaolane) and wild-type (RTx430) sorghum lines. In addition, the EPG results indicated that there is no significant difference in the time to first probe, time to reach first sieve element, pathway phase, and non-probing phase among the three sorghum plants, which suggests that the resistance factors present in the vascular tissues of the resistant line (SC265) potentially contribute to the resistance mechanisms against greenbugs. Overall, SC265 NAM parental line showed a combination of antixenotic and antibiotic-mediated resistance mechanisms against greenbugs, whereas the susceptible line Segaolane displayed the least resistance to greenbugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aljaryian R, Kumar L (2016) Changing global risk of invading greenbug Schizaphis graminum under climate change. Crop Prot 88:137–148

    Article  Google Scholar 

  • Armstrong JS, Rooney WL, Peterson GC, Villenueva RT, Brewer MJ, Sekula-Ortiz D (2015) Sugarcane aphid (Hemiptera: Aphididae): host range and sorghum resistance including cross-resistance from greenbug sources. J Econ Entomol 108:576–582

    Article  CAS  PubMed  Google Scholar 

  • Baldin EL, L. PL, Cruz R, Morando IF, Silva JPF, Bentivenha LRS, Tozin, Rodrigues TM (2017) Characterization of antixenosis in soybean genotypes to Bemisia tabaci (Hemiptera: Aleyrodidae) biotype B. J Econ Entomol 110:1869–1876

    Article  CAS  PubMed  Google Scholar 

  • Baldin EL, L. MD, Stamm JPF, Bentivenha KG, Koch TM, Heng-Moss, Hunt TE (2018) Feeding behavior of Aphis glycines (Hemiptera: Aphididae) on soybeans exhibiting antibiosis, antixenosis, and tolerance resistance. Fla Entomol 101:223–228

    Article  Google Scholar 

  • Berger PH, Zeyen RJ, Groth JV (1987) Aphid retention of maize dwarf mosaic virus (potyvirus): epidemiological implications. Ann Appl Biol 111:337–344

    Article  Google Scholar 

  • Bouchet S, Olatoye MO, Marla SR, Perumal R, Tesso T, Yu J, Tuinstra M, Morris GP (2017) Increased power to dissect adaptive traits in global sorghum diversity using a nested association mapping population. Genetics 206:573–585

    Article  PubMed  PubMed Central  Google Scholar 

  • Burd JD, Porter DR (2006) Biotypic diversity in greenbug (Hemiptera: Aphididae): characterizing new virulence and host associations. J Econ Entomol 99:959–965

    Article  PubMed  Google Scholar 

  • Chandran P, Reese JC, Khan SA, Wang D, Schapaugh W, Campbell LR (2013) Feeding behavior comparison of soybean aphid (Hemiptera: Aphididae) biotypes on different soybean genotypes. J Econ Entomol 106:2234–2240

    Article  PubMed  Google Scholar 

  • de Morais Cardoso L, Pinheiro SS, Martino HSD, Pinheiro-Sant’Ana HM (2017) Sorghum (Sorghum bicolor L.): nutrients, bioactive compounds, and potential impact on human health. Crit Rev Food Sci Nutr 57:372–390

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Montano J, Reese JC, Louis J, Campbell LR, Schapaugh WT (2007) Feeding behavior by the soybean aphid (Hemiptera: Aphididae) on resistant and susceptible soybean genotypes. J Econ Entomol 100:984–989

    Article  PubMed  Google Scholar 

  • Elliott AC, Hynan LS (2011) A SAS® macro implementation of a multiple comparison post hoc test for a Kruskal-Wallis analysis. Comput Methods Programs Biomed 102:75–80

    Article  PubMed  Google Scholar 

  • Flinn M, Smith CM, Reese JC, Gill B (2001) Categories of resistance to greenbug (Homoptera: Aphididae) biotype I in Aegilops tauschii germplasm. J Econ Entomol 94:558–563

    Article  CAS  PubMed  Google Scholar 

  • Gao J-R, Zhu KY (2002) Increased expression of an acetylcholinesterase gene may confer organophosphate resistance in the greenbug, Schizaphis graminum (Homoptera: Aphididae). Pestic Biochem Physiol 73:164–173

    Article  CAS  Google Scholar 

  • Gao L-L, Klingler JP, Anderson JP, Edwards OR, Singh KB (2008) Characterization of pea aphid resistance in Medicago truncatula. Plant Physiol 146:996–1009

    Article  PubMed  PubMed Central  Google Scholar 

  • George J, Lapointe SL (2018) Host plant resistance associated with Poncirus trifoliata influences the oviposition, larval development and adult emergence of Asian citrus psyllids, Diaphorina citri (Hemiptera: Liviidae). Pest Manag. Sci. https://doi.org/10.1002/ps.5113

    Article  PubMed  Google Scholar 

  • George J, Ammar E-D, Hall DG, Lapointe SL (2017) Sclerenchymatous ring as a barrier to phloem feeding by Asian citrus psyllid: evidence from electrical penetration graph and visualization of stylet pathways. PLoS ONE 12:e0173520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gosset V, Harmel N, Göbel C, Francis F, Haubruge E, Wathelet J-P, Jardin P, Feussner I, Fauconnier M-L (2009) Attacks by a piercing-sucking insect (Myzus persicae Sulzer) or a chewing insect (Leptinotarsa decemlineata Say) on potato plants (Solanum tuberosum L.) induce differential changes in volatile compound release and oxylipin synthesis. J Exp Bot 60:1231–1240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray SM, Smith DM, Barbierri L, Burd J (2002) Virus transmission phenotype is correlated with host adaptation among genetically diverse populations of the aphid Schizaphis graminum. Phytopathology 92:970–975

    Article  PubMed  Google Scholar 

  • Gur A, Zamir D (2004) Unused natural variation can lift yield barriers in plant breeding. PLoS Biol 2:e245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harvey TL, Hackerott HL (1969) Recognition of a greenbug biotype injurious to sorghum. J Econ Entomol 62:776–779

    Article  Google Scholar 

  • Harvey TL, Kofoid KD, Martin TJ, Sloderbeck PE (1991) A new greenbug virulent to E-biotype resistant sorghum. Crop Sci 31:1689–1691

    Article  Google Scholar 

  • Harvey TL, Wilde GE, Kofoid KD (1997) Designation of a new greenbug, biotype K, injurious to resistant sorghum. Crop Sci 37:989–991

    Article  Google Scholar 

  • Jiang YX, Walker GP (2001) Pathway phase waveform characteristics correlated with length and rate of stylet advancement and partial stylet withdrawal in AC electrical penetration graphs of adult whiteflies. Entomol Exp Appl 101:233–246

    Article  Google Scholar 

  • Koch KG, Palmer N, Stamm M, Bradshaw JD, Blankenship E, Baird LM, Sarath G, Heng-Moss TM (2015) Characterization of greenbug feeding behavior and aphid (Hemiptera: Aphididae) host preference in relation to resistant and susceptible tetraploid switchgrass populations. BioEnergy Res 8:165–174

    Article  Google Scholar 

  • Koch KG, Chapman K, Louis J, Heng-Moss T, Sarath G (2016) Plant tolerance: a unique approach to control hemipteran pests. Front. Plant Sci. 7

  • Kogan M, Ortman EF (1978) Antixenosis—a new term proposed to define Painter’s “nonpreference” modality of resistance. Bull Entomol Soc Am 24:175–176

    Google Scholar 

  • Li H, Payne WA, Michels GJ, Rush CM (2008) Reducing plant abiotic and biotic stress: drought and attacks of greenbugs, corn leaf aphids and virus disease in dryland sorghum. Environ Exp Bot 63:305–316

    Article  Google Scholar 

  • Louis J, Shah J (2013) Arabidopsis thalianaMyzus persicae interaction: shaping the understanding of plant defense against phloem-feeding aphids. Front Plant Sci 4:213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Louis J, Leung Q, Pegadaraju V, Reese JC, Shah J (2010) PAD4-dependent antibiosis contributes to the ssi2-conferred hyper-resistance to the green peach aphid. Mol Plant-Microbe Interact 23:618–627

    Article  CAS  PubMed  Google Scholar 

  • Louis J, Gobbato E, Mondal HA, Feys BJ, Parker JE, Shah J (2012a) Discrimination of Arabidopsis PAD4 activities in defense against green peach aphid and pathogens. Plant Physiol 158:1860–1872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Louis J, Singh V, Shah J (2012b) Arabidopsis thaliana—aphid interaction. Arabidopsis Book 10:e0159

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma R, Reese JC, Black WC, Bramel-Cox P (1990) Detection of pectinesterase and polygalacturonase from salivary secretions of living greenbugs, Schizaphis graminum (Homoptera: Aphididae). J Insect Physiol 36:507–512

    Article  CAS  Google Scholar 

  • Meihls LN, Handrick V, Glauser G, Barbier H, Kaur H, Haribal MM, Lipka AE, Gershenzon J, Buckler ES, Erb M, Köllner TG, Jander G (2013) Natural variation in maize aphid resistance is associated with 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one glucoside methyltransferase activity. Plant Cell 25:2341–2355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgham AT, Richardson PE, Campbell RK, Burd JD, Eikenbary RD, Sumner LC (1994) Ultrastructural responses of resistant and susceptible wheat to infestation by greenbug biotype E (Homoptera: Aphididae). Ann Entomol Soc Am 87:908–917

    Article  Google Scholar 

  • Nalam VJ, Keeretaweep J, Sarowar S, Shah J (2012) Root-derived oxylipins promote green peach aphid performance on Arabidopsis foliage. Plant Cell 24:1643–1653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nalam V, Louis J, Patel M, Shah J (2018a) Arabidopsis-Green Peach Aphid interaction: rearing the insect, no-choice and fecundity assays, and electrical penetration graph technique to study insect feeding behavior. Bio-protocol 8(15):e2950

    Article  CAS  Google Scholar 

  • Nalam V, Louis J, Shah J (2018b) Plant defense against aphids, the pest extraordinaire. Plant Sci. https://doi.org/10.1016/j.plantsci.2018.04.027

    Article  PubMed  Google Scholar 

  • Painter RH (1951) Insect resistance in crop plants. The Macmillan Company, New York

    Book  Google Scholar 

  • Pegadaraju V, Louis J, Singh V, Reese JC, Bautor J, Feys BJ, Cook G, Parker JE, Shah J (2007) Phloem-based resistance to green peach aphid is controlled by Arabidopsis PHYTOALEXIN DEFICIENT4 without its signaling partner ENHANCED DISEASE SUSCEPTIBILITY1. Plant J 52:332–341

    Article  CAS  PubMed  Google Scholar 

  • Peters DC, Wood EA, Starks KJ (1975) Insecticide resistance in selections of the greenbug. J Econ Entomol 68:339–340

    Article  CAS  Google Scholar 

  • Powell G, Tosh CR, Hardie J (2006) Host plant selection by aphids: behavioral, evolutionary, and applied perspectives. Annu Rev Entomol 51:309–330

    Article  CAS  PubMed  Google Scholar 

  • Reddy KVS (1988) Assessment of on-farm yield losses in sorghum due to insect pests. Int J Trop Insect Sci 9:679–685

    Article  Google Scholar 

  • Reddy PS, Bhagwat VR, Prasad GS, Tonapi VA (2017) Breeding for insect resistance in sorghum and millets. In: Breeding insect resistant crops sustainable agriculture. Springer, Singapore, pp 231–264

    Chapter  Google Scholar 

  • Royer TA, Pendleton BB, Elliott NC, Giles KL (2015) Greenbug (Hemiptera: Aphididae) biology, ecology, and management in wheat and sorghum. J Integr Pest Manage 6:19

    Article  Google Scholar 

  • Sharma HC, Ortiz R (2002) Host plant resistance to insects: an eco-friendly approach for pest management and environment conservation. J Environ Biol 23:111–135

    CAS  PubMed  Google Scholar 

  • Sharma S, Kooner R, Arora R (2017) Insect pests and crop losses. In: Breeding insect resistant crops sustainable agriculture. Springer, Singapore, pp 45–66

    Chapter  Google Scholar 

  • Sloderbeck PE, Chowdhury MA, DePew LJ, Buschman LL (1991) Greenbug (Homoptera: Aphididae) resistance to parathion and chlorpyrifos-methyl. J Kans Entomol Soc 64:1–4

    Google Scholar 

  • Smith CM (2005) Plant resistance to arthropods: molecular and conventional approaches, Springer

  • Stout MJ (2014) Host-plant resistance in pest management-chap. 1. In: Abrol DP (ed) Integrated pest management. Academic Press, San Diego, pp 1–21

    Google Scholar 

  • Stroup WW, Milliken GA, Claassen EA, Wolfinger RD. (2018) SAS® for mixed models: introduction and basic applications. Cary: SAS Institute Inc.

    Google Scholar 

  • Sun M, Voorrips RE, Steenhuis-Broers G, Van’t W, Westende, Vosman B (2018) Reduced phloem uptake of Myzus persicae on an aphid resistant pepper accession. BMC Plant Biol 18:138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor JRN, Schober TJ, Bean SR (2006) Novel food and non-food uses for sorghum and millets. J Cereal Sci 44:252–271

    Article  CAS  Google Scholar 

  • Teetes GL, Manthe CS, Peterson GC, Leuschner K, Pendleton BB (1995) Sorghum resistant to the sugarcane aphid, Melanaphis sacchari (Homoptera: Aphididae), in Botswana and Zimbabwe. Int J Trop Insect Sci 16:63–71

    Google Scholar 

  • Tjallingii WF (1985) Electrical nature of recorded signals during stylet penetration by aphids. Entomol Exp Appl 38:177–186

    Article  Google Scholar 

  • Tjallingii WF (2006) Salivary secretions by aphids interacting with proteins of phloem wound responses. J Exp Bot 57:739–745

    Article  CAS  PubMed  Google Scholar 

  • Vanderlip RL, Reeves HE (1972) Growth stages of sorghum [Sorghum bicolor (L.) Moench]. Agron J 64:13–16

    Article  Google Scholar 

  • Varsani S, Grover S, Zhou S, Koch KG, Huang P-C, Kolomiets MV, Williams WP, Heng-Moss T, Sarath G, Luthe DS, Jander G, Louis J (2019) 12-Oxo-phytodienoic acid acts as a regulator of maize defense against corn leaf aphid. Plant Physiol. https://doi.org/10.1104/pp.18.01472

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu KY, Gao J-R, Starkey SR (2000) Organophosphate resistance mediated by alterations of acetylcholinesterase in a resistant clone of the greenbug, Schizaphis graminum (Homoptera: Aphididae). Pestic Biochem Physiol 68:138–147

    Article  CAS  Google Scholar 

  • Zhu L, Reese JC, Louis J, Campbell L, Chen M-S (2011) Electrical penetration graph analysis of the feeding behavior of soybean aphids on soybean cultivars with antibiosis. J Econ Entomol 104:2068–2072

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Kyle Koch (University of Nebraska-Lincoln, USA) for providing the greenbug colony. Braden Wojahn was supported by Undergraduate Creative Activities and Research Experience (UCARE) funds from the University of Nebraska-Lincoln, USA. This work was partially supported by the Nebraska Agricultural Experiment Station with funding from the Hatch Act (Accession # 1007272) through the USDA National Institute of Food and Agriculture to Joe Louis and funds from USDA-ARS (58-3042-6-070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joe Louis.

Additional information

Handling Editor: Dagmar Voigt.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 100 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grover, S., Wojahn, B., Varsani, S. et al. Resistance to greenbugs in the sorghum nested association mapping population. Arthropod-Plant Interactions 13, 261–269 (2019). https://doi.org/10.1007/s11829-019-09679-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-019-09679-y

Keywords

Navigation