Skip to main content
Log in

Aphid-induction of defence-related metabolites in Arabidopsis thaliana is dependent upon density, aphid species and duration of infestation

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

A Correction to this article was published on 26 August 2019

This article has been updated

Abstract

Plants display a wide range of chemical defence responses when challenged by sap feeding insects. In this study, we examined changes in leaf chemistry in Arabidopis thaliana when challenged by three species of aphid which were all able to grow and reproduce on Arabidopsis: a generalist with wide host range, Myzus persicae, and two brassica specialists Brevicoryne brassicae and Lipaphis pseudobrassicae. Most glucosinolates were reduced in concentration by aphid feeding, but Myzus persicae consistently increased the levels of 4-methoxy-indolyl-glucosinolate, which is a known feeding deterrent for M. persicae, whilst decreasing other indolyls, suggesting the plant is converting these compounds to the former. The foliar concentrations of jasmonic acid and salicyclic acid were increased by M. persicae but not by B. brasssicae and L. pseudobrassicae, whereas the phytoalexin camalexin and its precursor, the amino acid tryptophan, was induced after feeding by all three aphids. Many of the compounds induced by M. persicae (e.g., jasmonic acid; salicylic acid; camalexin; tryptophan; 4-methoxy-indolyl-glucosinolate) exhibited positive relationships with aphid density and the duration of feeding prior to harvest, indicating that they are responding to the overall level of herbivore challenge that has taken place. The study reinforces the need to consider components of the experimental system (e.g., insect density, insect species, duration of feeding prior to harvest) when making inter-study comparisons of the chemical responses of plants to aphid feeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 26 August 2019

    The authors would like to include the following changes in the published article.

References

  • Ahuja I, Kissen R, Bones AM (2012) Phytoalexins in defense against pathogens. Trends Plant Sci 17:73–90

    Article  CAS  PubMed  Google Scholar 

  • Ali JG, Agrawal AA (2012) Specialist versus generalist insect herbiores and plant defence. Trends Plant Sci 17:293–302

    Article  CAS  PubMed  Google Scholar 

  • Bari R, Jones JD (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488

    Article  CAS  PubMed  Google Scholar 

  • Bennett RN, Wallsgrove RM (1994) Secondary metabolites in plant defence mechanisms. New Phytol 127:617–633

    Article  CAS  Google Scholar 

  • Bones AM, Rossiter JT (1996) The myrosinase-glucosinolate system, its organisation and biochemistry. Physiol Plant 97:194–208

    Article  CAS  Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143

    Article  Google Scholar 

  • Clay NK, Adio AM, Denoux C, Jander GJ, Ausubel FM (2009) Glucosinolate metabolites required for an Arabidopsis innate immune response. Science 323:95–101

    Article  CAS  PubMed  Google Scholar 

  • Cole RA (1997) The relative importance of glucosinolates and amino acids to the development of two aphid pests Brevicoryne brassicae and Myzus persicae on wild and cultivated Brassica species. Entomol Exp Appl 85:121–133

    Article  CAS  Google Scholar 

  • Cumming G (2012) Understanding the new statistics. Routledge, London

    Google Scholar 

  • de Ilarduya OM, Xie QG, Kaloshian I (2003) Aphid-induced defense responses in Mi-1-mediated compatible and incompatible tomato interactions. Mol Plant Microbe Interact 16:699–708

    Article  Google Scholar 

  • de Vos M, van Oosted VR, van Poecke RMP, van Pelt JA, Pozo MJ, Mueller MJ, Buchala AJ, Metraux J-P, van Loon LC, Dicke M, Pieterse CMJ (2005) Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol Plant Microbe Interact 18:923–937

    Article  CAS  PubMed  Google Scholar 

  • de Vos M, Kim JH, Jander G (2007) Biochemistry and molecular biology of Arabidopsis-aphid interactions. Bioessays 29:871–883

    Article  CAS  PubMed  Google Scholar 

  • Donovan MP, Nabity PD, DeLucia EH (2013) Salicylic acid-mediated reductions in yield in Nicotiana attenuate challenged by aphid herbivory. Arthropod Plant Interact 7:45–52

    Article  Google Scholar 

  • Erb M, Meldau S, Howe GA (2012) Role of phytohormones in insect-specific plant reactions. Trends Plant Sci 17:250–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forcat S, Bennett MH, Mansfield JW, Grant MR (2008) A rapid and robust method for simultaneously measuring changes in the phytohormones ABA, JA and SA in plants following biotic and abiotic stress. Plant Methods 4:16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glawischnig E (2007) Camalexin. Phytochemistry 68:401–406

    Article  CAS  PubMed  Google Scholar 

  • Glawischnig E, Hansen BG, Olsen CE, Halkier BA (2004) Camalexin is synthesized from indole-3-acetaldoxime, a key branching point between primary and secondary metabolism in Arabidopsis. Proc Natl Acad Sci USA 101:8245–8250

    Article  CAS  PubMed  Google Scholar 

  • Goggin FL (2007) Plant–aphid interactions: molecular and ecological perspectives. Curr Opin Plant Biol 10:399–408

    Article  CAS  PubMed  Google Scholar 

  • Henderson P, Seaby R (2008) A practical handbook for multivariate methods. Pisces Conservation Ltd., Lymington

    Google Scholar 

  • Hillwig MS, Chiozza M, Casteel CL, Lau ST, Hohenstein J, Hernández E, Jander G, MacIntosh GC (2016) Abscisic acid deficiency increases defence responses against Myzus persicae in Arabidopsis. Mol Plant Pathol 17:225–235

    Article  CAS  PubMed  Google Scholar 

  • Hodge S, Ward JL, Beale MH, Bennett M, Mansfield JW, Powell G (2013) Aphid-induced accumulation of trehalose in Arabidopsis thaliana is systemic and dependent upon aphid density. Planta 237:1057–1064

    Article  CAS  PubMed  Google Scholar 

  • Jaouannet M, Rodriguez PA, Thorpe P, Lenoir CJG, MacLeod R, Escudero-Martinez C, Bos JIB (2014) Plant immunity in plant–aphid interactions. Front Plant Sci 5:663

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaouannet M, Morris JA, Hedley PE, Bos JIB (2015) Characterization of Arabidopsis transcriptional responses to different aphid species reveals genes that contribute to host susceptibility and non-host resistance. PLoS Pathog 11:e1004918. https://doi.org/10.1371/journal.ppat.1004918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamphuis LG, Zulak K, Gao LL, Anderson J, Singh KB (2013) Plant–aphid interactions with a focus on legumes. Funct Plant Biol 40:1271–1284

    Article  CAS  Google Scholar 

  • Kettles GJ, Drurey C, Schoonbeek H, Maule AJ, Hogenhaut S (2013) Resistance of Arabidopsis thaliana to the green peach aphid, Myzus persicae, involves camalexin and is regulated by microRNAs. New Phytol 198:1178–1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JH, Jander G (2007) Myzus persicae (green peach aphid) feeding on Arabidopsis induces the formation of a deterrent indole glucosinolate. Plant J 49:1008–1019

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Lee BW, Schroeder FC, Jander G (2008) Identification of indole glucosinolate breakdown products with antifeedant effects on Myzus persicae (green peach aphid). Plant J 54:1015–1026

    Article  CAS  PubMed  Google Scholar 

  • Kroes A, van Loon JJ, Dicke M (2015) Density-dependent interference of aphids with caterpillar-induced defenses in Arabidopsis: involvement of phytohormones and transcription factors. Plant Cell Physiol 56:98–106

    Article  CAS  PubMed  Google Scholar 

  • Kroes A, Broekgaarden C, Castellanos Uribe M, May S, van Loon JJA, Dicke M (2017) Brevicoryne brassicae aphids interfere with transcriptome responses of Arabidopsis thaliana to feeding by Plutella xylostella caterpillars in a density-dependent manner. Oecologia 183:107–120

    Article  PubMed  Google Scholar 

  • Kuśnierczyk A, Winge PER, Jørstad TS, Troczyńska J, Rossiter JT, Bones AM (2008) Towards global understanding of plant defence against aphids: timing and dynamics of early Arabidopsis defence responses to cabbage aphid (Brevicoryne brassicae) attack. Plant Cell Environ 31:1097–1115

    Article  CAS  PubMed  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Li Y, Zou J, Li M, Bilgin DD, Vodkin LO, Hartman GL, Clough SJ (2008) Soybean defense responses to the soybean aphid. New Phytol 179:185–195

    Article  CAS  PubMed  Google Scholar 

  • Louis J, Shah J (2013) Arabidopsis thaliana—Myzus persicae interaction: shaping the understanding of plant defense against phloem-feeding aphids. Front Plant Sci. https://doi.org/10.3389/fpls.2013.00213

    Article  PubMed  PubMed Central  Google Scholar 

  • Mai VC, Drzewiecka K, Jelen H, Narozna D, Rucinska-Sobkowiak R, Kesy J, Floryszak-Wieczorek J, Gabrys B, Morkunas I (2014) Differential induction of Pisum sativum defense signaling molecules in response to pea aphid infestation. Plant Sci 221/222:1–12

    Article  CAS  Google Scholar 

  • Mewis I, Appel HM, Hom A, Raina R, Schultz JC (2005) Major signalling pathways modulate Arabidopsis glucosinolate accumulation and response to both phloem-feeding and chewing insects. Plant Physiol 138:1149–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mewis I, Tokuhisa JG, Schultz JC, Appel HM, Ulrichs C, Gershenzon J (2006) Gene expression and glucosinolate accumulation in Arabidopsis thaliana in response to generalist and specialist herbivores of different feeding guilds and the role of defense signaling pathways. Phytochemistry 67:2450–2462

    Article  CAS  PubMed  Google Scholar 

  • Mewis I, Khan MAM, Glawischnig E, Schreiner M, Ulrichs C (2012) Water stress and aphid feeding differentially influence metabolite composition in Arabidopsis thaliana (L.). PLoS ONE 7(11):e48661. https://doi.org/10.1371/journal.pone.0048661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohase L, van der Westhuizen AJ (2002) Salicylic acid is involved in resistance responses in the Russian wheat aphid-wheat interaction. J Plant Physiol 159:585–590

    Article  CAS  Google Scholar 

  • Moran P, Thompson GA (2001) Molecular responses to aphid feeding in Arabidopsis in relation to plant defense pathways. Plant Physiol 125:1074–1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moran PJ, Cheng Y, Cassell JL, Thompson GA (2002) Gene expression profiling of Arabidopsis thaliana in compatible plant-aphid interactions. Arch Insect Biochem Physiol 51:182–203

    Article  CAS  PubMed  Google Scholar 

  • Nault LR, Styer WE (1972) Effects of sinigrin on host selection by aphids. Entomol Exp Appl 15:423–437

    Article  CAS  Google Scholar 

  • Pegadaraju V, Knepper C, Reese J, Shah J (2005) Premature leaf senescence modulated by the PHYTOALEXIN DEFICIENT4 gene is associated with defense against the phloem-feeding green peach aphid. Plant Physiol 139:1927–1934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfalz M, Vogel H, Kroymann J (2009) The gene controlling the Indole Glucosinolate Modifier1 quantitative trait locus alters indole glucosinolate structures and aphid resistance in Arabidopsis. Plant Cell 21:985–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ponzio C, Papazian S, Albrectsen BR, Dicke M, Rieta G (2017) Dual herbivore attack and herbivore density affect metabolic profiles of Brassica nigra leaves. Plant Cell Environ 40:1356–1367

    Article  CAS  PubMed  Google Scholar 

  • Powell G, Tosh CR, Hardie J (2006) Host plant selection by aphids: behavioural, evolutionary, and applied perspectives. Annu Rev Entomol 51:309–330

    Article  CAS  PubMed  Google Scholar 

  • Pratt C, Pope TW, Powell G, Rossiter JT (2008) Accumulation of glucosinolates by the cabbage aphid Brevicoryne brassicae as a defense against two coccinellid species. J Chem Ecol 34:323–329

    Article  CAS  PubMed  Google Scholar 

  • Rashid MH, Khan A, Hossain MT, Chung YR1 (2017) Induction of systemic resistance against aphids by endophytic Bacillus velezensis YC7010 via xpressing PHYTOALEXIN DEFICIENT4 in Arabidopsis. Front Plant Sci 8:211

    PubMed  PubMed Central  Google Scholar 

  • Rohr F, Ulrichs C, Mewis I (2009) Variability of aliphatic glucosinolates in Arabidopsis thaliana (L.)—impact on glucosinolate profile and insect resistance. J Appl Bot Food Qual 82:131–135

    CAS  Google Scholar 

  • Rosa-Gomes MF, Salvadori JR, Schons J (2008) Damage of Rhopalosiphum padi (L.) (Hemiptera: Aphididae) on wheat plants related to duration time and density of infestation. Neotrop Entomol 37:577–581

    Article  Google Scholar 

  • Smith JL, De Moraes CM, Mescher MC (2009) Jasmonate- and salicylate mediated plant defense responses to insect herbivores, pathogens and parasitic plants. Pest Manag Sci 65:497–503

    Article  CAS  PubMed  Google Scholar 

  • Stewart SA, Hodge S, Ismail N, Mansfield JM, Feys BJ, Prosperi J-M, Huguet T, Ben C, Gentzbittel L, Powell G (2009) The RAP1 gene confers extreme, race-specific resistance to the pea aphid in Medicago truncatula independent of the hypersensitive reaction. Mol Plant Microbe Interact 12:1645–1655

    Article  CAS  Google Scholar 

  • Stewart SA, Hodge S, Bennett M, Mansfield JW, Powell G (2016) Aphid induction of phytohormones in Medicago truncatula is dependent upon time post-infestation, aphid density and the genotypes of both plant and insect. Arthropod Plant Interact 10:41–53

    Article  Google Scholar 

  • Studham ME, MacIntosh GC (2013) Multiple phytohormone signals control the transcriptional response to soybean aphid infestation in susceptible and resistant soybean plants. Mol Plant Microbe Interact 26:116–129

    Article  CAS  PubMed  Google Scholar 

  • Thompson GA, Goggin FL (2006) Transcriptomics and functional genomics of plant defence induction by phloem feeding insects. J Exp Bot 57:755–766

    Article  CAS  PubMed  Google Scholar 

  • Truong D-H, Delory BM, Vanderplanck M, Brostaux Y, Vandereycken A, Heuskin S, Delaplace P, Francis F, Lognay G (2014) Temperature regimes and aphid density interactions differentially influence VOC emissions in Arabidopsis. Arthropod Plant Interact 8:317–327

    Google Scholar 

  • Wentzell AM, Kliebenstein DJ (2008) Genotype, age, tissue, and environment regulate the structural outcome of glucosinolate activation. Plant Physiol 147:415–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang P-J, Huang F, Zhang J-M, Wei J-N, Lu Y-B (2015) The mealybug Phenacoccus solenopsis suppresses plant defense responses by manipulating JA-SA crosstalk. Sci Rep 5:9354. https://doi.org/10.1038/srep09354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu-Salzman K, Bi J-l, Liu T-X (2005) Molecular strategies of plant defense and insect counter defense. Insect Sci 12:3–15

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by a research Grant from the Biotechnology and Biological Sciences Research Council, UK. Our thanks go to Martin Selby for technical support, and Colin Turnbull, John Rossiter and Murray Grant for advice throughout this study. We thank three anonymous referees for their helpful comments on an earlier draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Hodge.

Additional information

Handling Editor: Robert Glinwood.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hodge, S., Bennett, M., Mansfield, J.W. et al. Aphid-induction of defence-related metabolites in Arabidopsis thaliana is dependent upon density, aphid species and duration of infestation. Arthropod-Plant Interactions 13, 387–399 (2019). https://doi.org/10.1007/s11829-018-9667-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-018-9667-0

Keywords

Navigation