Skip to main content
Log in

First insights into grapevine transcriptional responses as a result of vine mealybug Planococcus ficus feeding

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

Plant response to insect feeding appears to be highly specific with regard to the organisms in the system. Here, we report on the interaction between grapevine Vitis vinifera L. plants and a phloem-feeding insect pest, the vine mealybug Planococcus ficus (Homoptera: Pseudococcidae). Plants were exposed to P. ficus for periods of 6 and 96 h, respectively, after which they were analysed for differences in gene expression levels using microarrays. Grapevine displayed a fairly low response to mealybug feeding, with only 107 and 149 transcripts being differentially expressed compared to uninfested control plants after 6 and 96 h of mealybug feeding, respectively. Most of these genes are known to be expressed by grapevine or other plants as a response to microbial pathogen attack. In addition, intermediate exposure times (24, 48 and 72 h) of grapevine plants to P. ficus feeding were investigated using qPCR analysis of ten genes associated with known plant defence responses. Results showed that only a single gene, pathogenesis-related protein 1, was differentially expressed after 48 h of mealybug feeding compared to control plants. Therefore, our study has shown that on a transcriptional level grapevine plants respond weakly to attack by vine mealybugs, which is analogous to a range of other studies on plant responses to piercing-sucking insects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alba J, Glas J, Schimmel B, Kant M (2011) Avoidance and suppression of plant defenses by herbivores and pathogens. J Plant Interact 6:1–7

    Article  Google Scholar 

  • Albertazzi G, Milc J, Caffagni A, Francia E, Roncaglia E (2009) Gene expression in grapevine cultivars in response to Bois Noir phytoplasma infection. Plant Sci 176:792–804

    Article  CAS  Google Scholar 

  • Almeida RPP, Daane KM, Bell VA, Blaisdell GK, Cooper M, Herrbach E, Pietersen G (2013) Ecology and management of grapevine leafroll disease. Front Microbiol 4:1–13

    Article  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodological) 57:289–300

  • Bournier A (1977) Grape insects. Annu Rev Entomol 22:355–376

    Article  Google Scholar 

  • Broekgaarden C, Poelman E, Steenhuis G (2007) Genotypic variation in genome-wide transcription profiles induced by insect feeding: Brassica oleraceaPieris rapae interactions. BMC Genom 8:239

    Article  Google Scholar 

  • Broekgaarden C, Poelman EH, Steenuis G, Voorrips R, Dicke M, Vosman B (2008) Responses of Brassica oleracea cultivars to infestation by the aphid Brevicoryne brassicae: an ecological and molecular approach. Plant 31:1592–1605

    CAS  Google Scholar 

  • Broekgaarden C, Voorrips RE, Dicke M, Vosman B (2011) Transcriptional responses of Brassica nigra to feeding by specialist insects of different feeding guilds. Insect Sci 18:259–272

    Article  CAS  Google Scholar 

  • Camps C, Kappel C, Lecomte P, Leon C (2010) A transcriptomic study of grapevine (Vitis vinifera cv Cabernet-Sauvignon) interaction with the vascular ascomycete fungus Eutypa lata. J Exp Bot 61:1719–1737

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cid M, Fereres A (2010) Characterization of the probing and feeding behavior of Planococcus citri (Hemiptera: Pseudococcidae) on grapevine. Ann Entomol Soc Am 103:404–417

    Article  Google Scholar 

  • Couldridge C, Newbury H, Ford-Lloyd B, Bale J, Pritchard J (2007) Exploring plant responses to aphid feeding using a full Arabidopsis microarray reveals a small number of genes with significantly altered expression. Bull Entomol Res 97:523–532

    CAS  PubMed  Google Scholar 

  • Daane KM, Bentley WJ, Walton VM, Malakar-Kuenen R, Millar JG, Ingels CA, Weber EA, Gispert C (2006) New controls investigated for vine mealybug. Calif Agr 60:31–38

    Article  Google Scholar 

  • Daane KM, Cooper ML, Triapitsyn SV, Walton VM, Yokota GY, Haviland DR, Bentley WA, Godfrey KE, Wunderlich LR (2008) Vineyard managers and researchers seek sustainable solutions for mealybugs: a changing pest complex. Calif Agr 62:167–176

    Article  Google Scholar 

  • Daane KM, Almeida RPP, Bell VA, Walker JTS, Botton M, Fallahzadeh M, Mani M, Miano JL, Sforza R, Walton VM, Zaviezo T (2012) Biology and management of mealybugs in vineyards In: Bostanian NJ, Isaacs R Vincent C (eds) Arthropod management in vineyards. Springer, Dordrecht, pp 271–308

  • Dai R, Ge H, Howard S, Qiu W (2012) Transcriptional expression of stilbene synthase genes are regulated developmentally and differentially in response to powdery mildew in Norton and Cabernet Sauvignon grapevine. Plant Sci 197:70–76

    Article  CAS  PubMed  Google Scholar 

  • de Vos M, Jander G (2010) Volatile communication in plant-aphid interactions. Curr Opin Plant Biol 13:366–371

    Article  PubMed  Google Scholar 

  • Delp G, Gradin T, Åhman I, Jonsson L (2009) Microarray analysis of the interaction between the aphid Rhopalosiphum padi and host plants reveals both differences and similarities between susceptible and partially resistant barley lines. Mol Genet Genomics 281:233–248

    Article  CAS  PubMed  Google Scholar 

  • Dufour MC, Lambert C, Bouscaut J, Merillon JM, Corio-Costet MM (2013) Benzothiadiazole-primed defence responses and enhanced differential expression of defence genes in Vitis vinifera infected with biotrophic pathogens Erysiphe necator and Plasmopara viticola. Plant Path 62:370–382

    Article  CAS  Google Scholar 

  • Ehlting J, Chowrira S, Mattheus N (2008) Comparative transcriptome analysis of Arabidopsis thaliana infested by diamond back moth (Plutella xylostella) larvae reveals signatures of stress response secondary metabolism and signaling. BMC Genom 9:154

    Article  Google Scholar 

  • Engelbrecht DJ, Kasdorf GGF (1990) Transmission of grapevine leafroll disease and associated closteroviruses by the vine mealybug Planococcus ficus. Phytophylactica 22:341–346

    Google Scholar 

  • Espinoza C, Vega A, Medina C, Schlauch K, Cramer G, Arce-Johnson P (2007) Gene expression associated with compatible viral diseases in grapevine cultivars. Funct Integr Genomics 7:95–110

    Article  CAS  PubMed  Google Scholar 

  • Figueiredo A, Monteiro F, Fortes AM, Bonow-Rex M, Zyprian E, Sousa L, Pais MS (2012) Cultivar-specific kinetics of gene induction during downy mildew early infection in grapevine. Funct Integr Genomics 12:379–386

    Article  CAS  PubMed  Google Scholar 

  • Gambino G, Cuozzo D, Fasoli M, Pagliarani C, Vitali M, Boccacci P, Pezzotti M, Mannini F (2012) Co-evolution between grapevine rupestris stem pitting-associated virus and Vitis vinifera L leads to decreased defence responses and increased transcription of genes related to photosynthesis. J Exp Bot 63:5919–5933

    Article  CAS  PubMed  Google Scholar 

  • Gambino G, Boccacci P, Margaria P, Palmano S, Gribaudo I (2013) Hydrogen peroxide accumulation and transcriptional changes in grapevines recovered from flavescence doree disease. Phytopath 103:776–784

    Article  CAS  Google Scholar 

  • Gutha LR, Casassa LF, Harbertson JF, Naidu RA (2010) Modulation of flavonoid biosynthetic pathway genes and anthocyanins due to virus infection in grapevine (Vitis vinifera L.) leaves. BMC Plant Biol 10:187

    Article  PubMed Central  PubMed  Google Scholar 

  • Gutsche A, Heng-Moss T, Sarath G, Twigg P, Xia Y, Lu G, Mornhinweg D (2008) Gene expression profiling of tolerant barley in response to Diuraphis noxia (Hemiptera: Aphididae) feeding. Bull Entomol Res 99:163–173

    Article  PubMed  Google Scholar 

  • Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007) qBase: relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8:R19

    Article  PubMed Central  PubMed  Google Scholar 

  • Irizarry RA, Hobbs B, Collin F, Barclay YDB, Antonellis KJ, Scherf U, Speed TP (2003) Exploration normalization and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249–264

    Article  PubMed  Google Scholar 

  • Kempema L, Cui X, Holzer F, Walling L (2007) Arabidopsis transcriptome changes in response to phloem-feeding silverleaf whitefly nymphs: Similarities and distinctions in responses to aphids. Plant Physiol 143:849–865

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kusnierczyk A, Winge P, Jørstad T (2008) Towards global understanding of plant defence against aphids—timing and dynamics of early Arabidopsis defence responses to cabbage aphid (Brevicoryne brassicae) attack. Plant, Cell Environ 31:1097–1115

    Article  CAS  Google Scholar 

  • Lawrence SD, Novak NG, Ju CJT, Cooke JEK (2008) Potato Solanum tuberosum defense against Colorado potato beetle Leptinotarsa decemlineata (Say): microarray gene expression profiling of potato by Colorado potato beetle regurgitant treatment of wounded leaves. J Chem Ecol 34:1013–1025

    Article  CAS  PubMed  Google Scholar 

  • Ling K, Zhu H, Petrovic N, Gonsalves D (2001) Comparative effectiveness of ELISA and RT-PCR for detecting grapevine leafroll-associated closterovirus-3 in field samples. Am J Enol Vit 52:21

    CAS  Google Scholar 

  • Park S, Huang Y, Ayoubi P (2006) Identification of expression profiles of sorghum genes in response to greenbug phloem-feeding using cDNA subtraction and microarray analysis. Planta 223:932–947

    Article  CAS  PubMed  Google Scholar 

  • Polesani M, Desario F, Ferrarini A, Zamboni A, Pezzotti M, Kortekamp A, Polverari A (2008) cDNA-AFLP analysis of plant and pathogen genes expressed in grapevine infected with Plasmopara viticola. BMC Genom 9:142

    Article  Google Scholar 

  • Polesani M, Bortesi L, Ferrarini A, Zamboni A (2010) General and species-specific transcriptional responses to downy mildew infection in a susceptible (Vitis vinifera) and a resistant (V riparia) grapevine species. BMC Genom 11:117

    Article  Google Scholar 

  • Qubbaj T, Reineke A, Zebitz CPW (2005) Molecular interactions between rosy apple aphids Dysaphis plantaginea and resistant and susceptible cultivars of its primary host Malus domestica. Entomol Exp Appl 115:145–152

    Article  CAS  Google Scholar 

  • Repetto O, Bertazzon N, De Rosso M, Miotti L, Flamini R, Angelini E, Borgo M (2012) Low susceptibility of grapevine infected by GLRaV-3 to late Plasmopara viticola infections: towards understanding the phenomenon. Physiol Mol Plant Pathol 79:55–63

    Article  CAS  Google Scholar 

  • Rotter A, Camps C, Lohse M, Kappel C (2009) Gene expression profiling in susceptible interaction of grapevine with its fungal pathogen Eutypa lata: extending MapMan ontology for grapevine. BMC Plant Biol 9:104

    Article  PubMed Central  PubMed  Google Scholar 

  • Sandanayaka WRM, Blouin AG, Prado E, Cohen D (2013) Stylet penetration behaviour of Pseudococcus longispinus in relation to acquisition of grapevine leafroll virus 3. Arthropod Plant Interact 7:137–146

    Article  Google Scholar 

  • Smith C, Liu X, Wang L, Liu X, Chen M (2010) Aphid feeding activates expression of a transcriptome of oxylipin-based defense signals in wheat involved in resistance to herbivory. J Chem Ecol 36:260–276

    Article  CAS  PubMed  Google Scholar 

  • Smyth GK (2005) Limma: linear models for microarray data In: Gentleman R, Carey V, Huber W, Irizarry R, Dudoit S (eds) Bioinformatics and computational biology solutions using R and bioconductor. Springer, New York, pp 397–420

  • Tsai C-W, Chau J, Fernandez L, Bosco D, Daane KM, Almeida RPP (2008) Transmission of grapevine leafroll-associated virus 3 by the vine mealybug (Planococcus ficus). Phytopathol 98:1093–1098

    Article  Google Scholar 

  • Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JAM (2007) Primer3Plus an enhanced web interface to Primer3. Nuc Acids Res 35:W71–W74

    Article  Google Scholar 

  • Walling LL (2008) Avoiding effective defenses: strategies employed by phloem-feeding insects. Plant Physiol 146:859–866

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu J, Baldwin IT (2010) New insights into plant responses to the attack from insect herbivores. Ann Rev Genet 44:1–24

    Article  CAS  PubMed  Google Scholar 

  • Zarate SI, Kempema LA, Walling LL (2007) Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses. Plant Physiol 143:866–875

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang F, Zhu L, He G (2004) Differential gene expression in response to brown planthopper feeding in rice. J Plant Physiol 161:53–62

    Article  CAS  PubMed  Google Scholar 

  • Zhang P-J, Li W, Huang F, Zhang JM, Xu F-C, Lu Y-B (2013) Feeding by whiteflies suppresses downstream jasmonic acid signaling by eliciting salicylic acid signaling. J Chem Ecol 39:612–619

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Renee Sforza for providing insect specimens and acknowledge a grant from the Alexander von Humboldt Foundation for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia E. Timm.

Additional information

Handling Editor: Chen-Zhu Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timm, A.E., Reineke, A. First insights into grapevine transcriptional responses as a result of vine mealybug Planococcus ficus feeding. Arthropod-Plant Interactions 8, 495–505 (2014). https://doi.org/10.1007/s11829-014-9340-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-014-9340-1

Keywords

Navigation