Skip to main content
Log in

Loss of energy dissipation capacity from the deadzone in linear and nonlinear viscous damping devices

  • Published:
Earthquake Engineering and Engineering Vibration Aims and scope Submit manuscript

Abstract

In a viscous damping device under cyclic loading, after the piston reaches a peak stroke, the reserve movement that follows may sometimes experience a short period of delayed or significantly reduced device force output. A similar delay or reduced device force output may also occur at the damper’s initial stroke as it moves away from its neutral position. This phenomenon is referred to as the effect of “deadzone”. The deadzone can cause a loss of energy dissipation capacity and less efficient vibration control. It is prominent in small amplitude vibrations. Although there are many potential causes of deadzone such as environmental factors, construction, material aging, and manufacture quality, in this paper, its general effect in linear and nonlinear viscous damping devices is analyzed. Based on classical dynamics and damping theory, a simple model is developed to capture the effect of deadzone in terms of the loss of energy dissipation capacity. The model provides several methods to estimate the loss of energy dissipation within the deadzone in linear and sublinear viscous fluid dampers. An empirical equation of loss of energy dissipation capacity versus deadzone size is formulated, and the equivalent reduction of effective damping in SDOF systems has been obtained. A laboratory experimental evaluation is carried out to verify the effect of deadzone and its numerical approximation. Based on the analysis, a modification is suggested to the corresponding formulas in FEMA 356 for calculation of equivalent damping if a deadzone is to be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • FEMA 273 (1997), “NEHRP Guidelines for the Seismic Rehabilitation of Buildings,” Federal Emergency Management Agency.

  • FEMA 356 (2000), “Pre-standard and Commentary for the Seismic Rehabilitation of Buildings,” Federal Emergency Management Agency.

  • Hanson RD and Soong TT (2001), “Seismic Design with Supplemental Energy Dissipation Devices,” Monograph, EERI MNO-8.

  • Jones and David IG (2002), Shock and Vibration Handbook: Chapter 37 — Applied Damping, Treatments ed. Harris CM and Piersol AG, New York: McGraw-Hill.

    Google Scholar 

  • Ramirez Oscar M, Constantinou, Gomez J, Whittaker A and Chrysostomou C (2002), “Evaluation of Simplified Methods of Analysis of Yielding Structures with Damping Systems,” Earthquake Spectra, 18(3):501–530.

    Article  Google Scholar 

  • Skinner SI, Robinson WH and McVerry GH (2001), An Introduction to seismic Isolation, John Wiley & Sons.

  • Soong TT and Dargush GF (1997), Passive Energy Dissipation Systems in Structural Engineering, John Wiley & Sons.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mai Tong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tong, M., Liebner, T. Loss of energy dissipation capacity from the deadzone in linear and nonlinear viscous damping devices. Earthq. Engin. Engin. Vib. 6, 11–20 (2007). https://doi.org/10.1007/s11803-007-0701-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11803-007-0701-y

Keywords

Navigation