Skip to main content
Log in

The Singular Bivariate Quartic Tracial Moment Problem

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

The (classical) truncated moment problem, extensively studied by Curto and Fialkow, asks to characterize when a finite sequence of real numbers indexes by words in commuting variables can be represented with moments of a positive Borel measure \(\mu \) on \(\mathbb R^n\). Burgdorf and Klep (J Oper Theory 68:141–163, 2012) introduced its tracial analog, the truncated tracial moment problem, which replaces commuting variables with non-commuting ones and moments of \(\mu \) with tracial moments of matrices. In the bivariate quartic case, where indices run over words in two variables of degree at most four, every sequence with a positive definite \(7\times 7\) moment matrix \(\mathcal M_2\) can be represented with tracial moments (Burgdorf and Klep in C R Math Acad Sci Paris 348:721–726, 2010, 2012). In this article the case of singular \(\mathcal M_2\) is studied. For \(\mathcal M_2\) of rank at most 5 the problem is solved completely; namely, concrete measures are obtained whenever they exist and the uniqueness question of the minimal measures is answered. For \(\mathcal M_2\) of rank 6 the problem splits into four cases, in two of which it is equivalent to the feasibility problem of certain linear matrix inequalities. Finally, the question of a flat extension of the moment matrix \(\mathcal M_2\) is addressed. While this is the most powerful tool for solving the classical case, it is shown here by examples that, while sufficient, flat extensions are mostly not a necessary condition for the existence of a measure in the tracial case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akhiezer, N.I.: The Classical Moment Problem and Some Related Questions in Analysis. Hafner Publishing Co., New York (1965)

    MATH  Google Scholar 

  2. Ambrozie, C.G., Vasilescu, F.H.: Operator-theoretic positivstellensätze. Z. Anal. Anwend. 22, 299–314 (2003)

    Article  MATH  Google Scholar 

  3. Bakonyi, M., Woerdeman, H.J.: Matrix Completions, Moments, and Sums of Hermitian Squares. Princeton University Press, Princeton (2011)

    Book  MATH  Google Scholar 

  4. Bayer, C., Teichmann, J.: The proof of Tchakaloff’s theorem. Proc. Am. Math. Soc. 134, 3035–3040 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bessis, D., Moussa, P., Villani, M.: Monotonic converging variational approximations to the functional integrals in quantum statistical mechanics. J. Math. Phys. 16, 2318–2325 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bhardwaj, A.: Trace Positive, Non-commutative Polynomials and the Truncated Moment Problem, MSc Thesis, University of Auckland, Auckland, https://researchspace.auckland.ac.nz/handle/2292/30249, (2016)

  7. Burgdorf, S.: Sums of Hermitian squares as an approach to the BMV conjecture. Linear Multilinear Algebra 59, 1–9 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Burgdorf, S., Cafuta, K., Klep, I., Povh, J.: The tracial moment problem and trace-optimization of polynomials. Math. Program. 137, 557–578 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Burgdorf, S., Klep, I.: Trace-positive polynomials and the quartic tracial moment problem. C. R. Math. Acad. Sci. Paris 348, 721–726 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Burgdorf, S., Klep, I.: The truncated tracial moment problem. J. Oper. Theory 68, 141–163 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Burgdorf, S., Klep, I., Povh, J.: Optimization of Polynomials in Non-Commuting Variables. Springer Briefs in Mathematics. Springer, Berlin (2016)

    MATH  Google Scholar 

  12. Cafuta, K.: On matrix algebras associated to sum-of-squares semidefinite programs. Linear Multilinear Algebra 61, 1496–1509 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cimprič, J., Marshall, M., Netzer, T.: On the real multidimensional rational \(K\)-moment problem. Trans. Am. Math. Soc. 363, 5773–5788 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cimprič, J., Zalar, A.: Moment problems for operator polynomials. J. Math. Anal. Appl. 401, 307–316 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Connes, A.: Classification of injective factors. Cases \(I\! I_1\), \(I\! I_{\infty }\), \(I\! I\! I_{\lambda }\), \(\lambda \ne 1\). Ann. Math. 104, 73–115 (1976)

    Article  MathSciNet  Google Scholar 

  16. Curto, R.E., Fialkow, L.A.: Solution of the truncated complex moment problem for flat data. Memoirs of the American Mathematical Society, vol. 568. American Mathematical Soc (1996).

  17. Curto, R., Fialkow, L.: Flat extensions of positive moment matrices: relations in analytic or conjugate terms. Oper. Theory Adv. Appl. 104, 59–82 (1998)

    MathSciNet  MATH  Google Scholar 

  18. Curto, R.E., Fialkow, L.A.: Flat extensions of positive moment matrices: recursively generated relations. Memoirs of the American Mathematical Society, vol. 648. American Mathematical Soc (1998)

  19. Curto, R., Fialkow, L.: Solution of the singular quartic moment problem. J. Oper. Theory 48, 315–354 (2002)

    MathSciNet  MATH  Google Scholar 

  20. Curto, R., Fialkow, L.: Solution of the truncated parabolic moment problem. Integral Equ. Oper. Theory 50, 169–196 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Curto, R., Fialkow, L.: Solution of the truncated hyperbolic moment problem. Integral Equ. Oper. Theory 52, 181–218 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Curto, R., Fialkow, L.: An analogue of the Riesz–Haviland theorem for the truncated moment problem. J. Funct. Anal. 225, 2709–2731 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Curto, R., Seonguk, Y.: Concrete solution to the nonsingular quartic binary moment problem. Proc. Am. Math. Soc. 144, 249–258 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Delzell, C.N., Prestel, A.: Positive polynomials: from Hilbert’s 17th problem to real algebra. Springer Monographs in Mathematics. Springer, Berlin (2001)

    MATH  Google Scholar 

  25. Doherty, A.C., Liang, Y.-C., Toner, B., Wehner, S.: The quantum moment problem and bounds on entangled multi-prover games. In: Twenty-Third Annual IEEE Conference on Computational Complexity, pp. 199–210. IEEE Computer Soc., Los Alamitos, CA (2008)

  26. Haviland, E.K.: On the momentum problem for distribution functions in more than one dimension II. Am. J. Math. 58, 164–168 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Fialkow, L., Nie, J.: Positivity of Riesz functionals and solutions of quadratic and quartic moment problems. J. Funct. Anal. 258, 328–356 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Fialkow, L.: The truncated moment problem on parallel lines. The Varied Landscape of Operator Theory, 99–116 (2014)

  29. Ghasemi, M., Kuhlmann, S., Marshall, M.: Moment problem in infinitely many variables. Isr. J. Math. 212, 989–1012 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Helton, J.W.: “Positive” non-commutative polynomials are sums of squares. Ann. Math. 156, 675–694 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Helton, J.W., Klep, I., McCullough, S.: The convex Positivstellensatz in a free algebra. Adv. Math. 231, 516–534 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Helton, J.W., McCullough, S.: A Positivstellensatz for noncommutative polynomials. Trans. Am. Math. Soc. 365, 3721–3737 (2004)

    Article  MATH  Google Scholar 

  33. Infusino, M., Kuna, T., Rota, A.: The full infinite dimensional moment problem on semialgebraic sets of generalized functions. J. Funct. Anal. 267, 1382–1418 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kimsey, D.P., Woerdeman, H.J.: The multivariable matrix valued \(K\)-moment problem on \(\mathbb{R}^d\), \(\mathbb{C}^d\), \(\mathbb{T}^d\). Trans. Am. Math. Soc. 365, 5393–5430 (2013)

    Article  MATH  Google Scholar 

  35. Kovalishina, I.V.: Analytic theory of a class of interpolation problems. Izv. Akad. Nauk SSSR Ser. Mat. 47, 455–497 (1983)

    MathSciNet  Google Scholar 

  36. Krein, M.: Infinite J-matrices and a matrix-moment problem. Doklady Akad. Nauk SSSR (N.S.) 69, 125–128 (1949)

    MathSciNet  Google Scholar 

  37. Krein, M.G., Nudelman, A.A.: The Markov moment problem and extremal problems. Translations of Mathematical Monographs. Am. Math. Soc. (1977)

  38. Kuhlmann, S., Marshall, M.: Positivity, sums of squares and the multidimensional moment problem. Trans. Am. Math. Soc. 354, 4285–4301 (2002)

    Article  MATH  Google Scholar 

  39. Klep, I., Schweighofer, M.: Connes’ embedding conjecture and sums of hermitian squares. Adv. Math. 217, 1816–1837 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. Klep, I., Schweighofer, M.: Sums of Hermitian squares and the BMV conjecture. J. Stat. Phys. 133, 739–760 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  41. Lasserre, J.B.: Moments, Positive Polynomials and Their Applications. Imperial College Press, London (2009)

    Book  Google Scholar 

  42. Laurent, M.: Revising two theorems of Curto and Fialkow on moment matrices. Proc. Am. Math. Soc. 133, 2965–2976 (2005)

    Article  MATH  Google Scholar 

  43. Laurent, M.: Sums of squares, moment matrices and optimization over polynomials. In: Emerging Applications of Algebraic Geometry, Vol. 149 of IMA Volumes in Mathematics and its Applications, pp. 157–270, Springer, (2009)

  44. Laurent, M., Piovesan, T.: Conic approach to quantum graph parameters using linear optimization over the completely positive semidefinite cone. SIAM J. Optim. 25, 2461–2493 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. Jacobi, T., Prestel, A.: Distinguished representations of strictly positive polynomials. J. Reine Angew. Math. 532, 223–235 (2001)

    MathSciNet  MATH  Google Scholar 

  46. Marshall, M.: Positive polynomials and sums of squares. Mathematical Surveys and Monographs 146. Am. Math. Soc. (2008)

  47. McCullough, S.: Factorization of operator-valued polynomials in several non-commuting variables. Linear Algebra Appl. 326, 193–204 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  48. Powers, V., Scheiderer, C.: The moment problem for non-compact semialgebraic sets. Adv. Geom. 1, 71–88 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  49. Putinar, M.: Positive polynomials on compact semi-algebraic sets. Indiana Univ. Math. J. 42, 969–984 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  50. Putinar, M., Scheiderer, C.: Multivariate moment problems: geometry and indeterminateness. Ann. Sc. Norm. Super. Pisa Cl. Sci. 5, 137–157 (2006)

    MathSciNet  MATH  Google Scholar 

  51. Putinar, M., Schmüdgen, K.: Multivariate determinateness. Indiana Univ. Math. J. 57, 2931–2968 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  52. Putinar, M., Vasilescu, F.-H.: Solving moment problems by dimensional extension. Ann. Math. 149, 1087–1107 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  53. Quarez, R.: Trace-positive non-commutative polynomials. Proc. Am. Math. Soc. 143, 3357–3370 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  54. Schmüdgen, K.: The K-moment problem for compact semi-algebraic sets. Math. Ann. 289, 203–206 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  55. Smul’jan, J.L.: An operator Hellinger integral. Mat. Sb. (N.S.) 49, 381–430 (1959)

    MathSciNet  Google Scholar 

  56. Stochel, J.: Solving the truncated moment problem solves the moment problem/Glasgow. J. Math. 43, 335–341 (2001)

    MATH  Google Scholar 

  57. Tchakaloff, V.: Formules de cubatures mécaniques à coefficients non négatifs. Bull. Sci. Math. 81, 123–134 (1957)

    MathSciNet  MATH  Google Scholar 

  58. Vasilescu, F.H.: Spectral measures and moment problems. In: Spectral theory and its applications, pp. 173–215 (2003)

  59. Wolfram Research, Inc., Mathematica, Version 9.0, Wolfram Research, Inc., Champaign, IL (2012)

Download references

Acknowledgements

Part of this paper was written at The University of Auckland under the supervision of Igor Klep who was the MSc supervisor of the first author and the PhD co-supervisor of the second author. Both authors wish to thank him for introducing us to this topic, the many insightful and inspiring discussions and support throughout the research. We are also thankful to two anonymous referees for useful comments and suggestions for improvements of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aljaž Zalar.

Additional information

Communicated by Igor Klep.

Aljaž Zalar was supported by the Slovenian Research Agency and in part by the Slovene Human Resources Development and Scholarship Fund.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhardwaj, A., Zalar, A. The Singular Bivariate Quartic Tracial Moment Problem. Complex Anal. Oper. Theory 12, 1057–1142 (2018). https://doi.org/10.1007/s11785-017-0756-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11785-017-0756-3

Keywords

Mathematics Subject Classification

Navigation