Skip to main content
Log in

Existence of solutions to nonlinear functional-integral equations via the measure of noncompactness

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

The purpose of this work is to present two new notions of \(\mu \)-set contraction of a bounded subset of a Banach space and establish some fixed point and coupled fixed point results in the direction of Darbo (Rend Sem Math Univ Padova 4:84–92, 1995). We apply our work to get existence of solutions to nonlinear functional-integral equations followed by an illustration. Our work generalizes many existing results in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aghajani, A., Banaś, J., Sabzali, N.: Existence of solution for a class of nonlinear Volterra singular integral equations. Comput. Math. Appl. 62, 1215–1227 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aghajani, A., Banaś, J., Sabzali, N.: Some generalizations of Darbo fixed point theorem and applications. Bull. Belg. Math. Soc. Simon Stevin. 20(2), 345–358 (2013)

    MathSciNet  MATH  Google Scholar 

  3. Aghajani, A., Sabzali, N.: Existence of coupled fixed points via measure of noncompactness and applications. J. Nonlinear Convex Anal. 15(5), 941–952 (2014)

    MathSciNet  MATH  Google Scholar 

  4. Aghajani, A., Allahyari, R., Mursaleen, M.: A generalization of Darbos theorem with application to the solvability of systems of integral equations. J. Comput. Appl. Math. 260, 68–77 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Altun, I., Turkoglu, D.: A fixed point theorem for mappings satisfying a general contractive condition of operator type. J. Comput. Anal. Appl. 9(1), 9–14 (2007)

    MathSciNet  MATH  Google Scholar 

  6. Arab, R.: Some fixed point theorems in generalized darbo fixed point theorem and the existence of solutions for system of integral equations. J. Korean Math. Soc. 52(1), 125–139 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Arab, R.: The existence of fixed points via the measure of noncompactness and its application to functional-integral equations. Mediterr. J. Math. 13, 759–773 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Banaś, J.: Measures of noncompactness in the space of continuous tempered functions. Demonstr. Math. 14, 127–133 (1981)

    MathSciNet  MATH  Google Scholar 

  9. Banaś, J., Goebel, K.: Measures of noncompactness in Banach Spaces. Lecture Notes in Pure and Applied Mathematics, vol. 60. Dekker, New York (1980)

    MATH  Google Scholar 

  10. Burton, T.A.: Krasnoselskii’s inversion principle and fixed points. Nonlinear Anal. 30, 3975–3986 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Burton, T.A., Kirk, C.: A fixed point theorem of Krasnoselskii–Schaefer type. Math. Nachrichten 189, 23–31 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Darbo, G.: Punti uniti in transformazioni a condominio non compatto. Rend. Sem. Math. Univ. Padova 4, 84–92 (1995)

    MathSciNet  MATH  Google Scholar 

  13. Geraghty, M.: On contractive mappings. Proc. Am. Math. Soc. 40, 604–608 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  14. Guo, D., Lakshmikantham, V., Liu, X.: Nonlinear Integral Equations in Abstract Spaces, Mathematics and Its Applications, vol. 373. Kluwer Academic Publishers, Dordrecht (1996)

    Book  Google Scholar 

  15. Kuratowski, K.: Sur les espaces completes. Fund. Math. 15, 301–309 (1930)

    Article  MATH  Google Scholar 

  16. Mizoguchi, N., Takahashi, W.: Fixed point theorems for multivalued mappings on complete metric spaces. J. Math. Anal. Appl. 141(1), 177–188 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mursaleen, M., Mohiuddine, S.A.: Applications of measures of noncompactness to the infinite system of differential equations in \(l_p\) spaces. Nonlinear Anal. TMA 75, 2111–2115 (2012)

    Article  MATH  Google Scholar 

  18. Mursaleen, M., Rizvi, S.M.H.: Solvability of infinite systems of second order differential equations in \(c_0\) and \(\ell _1\) by Meir-Keeler condensing operators. Proc. Am. Math. Soc. 144(10), 4279–4289 (2016)

    Article  MATH  Google Scholar 

  19. Reich, S.: Fixed points in locally convex spaces. Math. Z. 125(1), 17–31 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  20. Reich, S.: Fixed points of condensing functions. J. Math. Anal. Appl. 41, 460–467 (1973)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the referees for careful reading of the manuscript. The first author is thankful to the United States-India Education Foundation, New Delhi, India, and IIE/CIES, Washington, DC, USA, for Fulbright-Nehru PDF Award (no. 2052/FNPDR/2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Arab.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nashine, H.K., Arab, R. Existence of solutions to nonlinear functional-integral equations via the measure of noncompactness. J. Fixed Point Theory Appl. 20, 66 (2018). https://doi.org/10.1007/s11784-018-0546-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11784-018-0546-1

Keywords

Mathematics Subject Classification

Navigation