Skip to main content

Advertisement

Log in

Near-infrared spectroscopy coupled chemometric algorithms for prediction of antioxidant activity of black goji berries (Lycium ruthenicum Murr.)

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

In this study, near-infrared (NIR) spectroscopy coupled with partial least-squares (PLS) regression and various efficient variable selection algorithms, synergy interval-PLS (Si-PLS), backward interval PLS (Bi-PLS) and genetic algorithm-PLS (GA-PLS) were applied comparatively for the prediction of antioxidant activity in black wolfberry (BW). The eight assays were used for quantification of antioxidant content. The developed models were assessed using correlation coefficients (R2) of the calibration (Cal.) and prediction (Pre.); root mean square error of prediction, RMSEP; standard Error of Cross-Validation, RMSECV and residual predictive deviation, RPD. The performance of the built model greatly improved by the application of Si-PLS, Bi-PLS and GA-PLS compared with full spectrum PLS. The R2 values determined for calibration and prediction set ranged from 0.8479 to 0.9696 and 0.8401 to 0.9638, respectively. These findings revealed that NIR spectroscopy combined with chemometric algorithms can be used for quantification of antioxidant activity in BW samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. D. Donno, G.L. Beccaro, M.G. Mellano, A.K. Cerutti, G. Bounous, J. Funct. Foods 18, 1070–1085 (2013)

    Article  Google Scholar 

  2. C. Chen, S. Yun, Y. Tao, L. Mei, Q. Shu, L. Wang, J. Pharm. Technol. Drug Res. 2, 1 (2013)

    Article  CAS  Google Scholar 

  3. Q. Peng, X. Lv, Q. Xu, Y. Li, L. Huang, Y. Du, Carbohydr. Polym. 90, 95–101 (2012)

    Article  CAS  Google Scholar 

  4. J. Lako, V.C. Trenerry, M. Wahlqvist, N. Wattanapenpaiboon, S. Sotheeswaran, R. Premier, Food Chem. 101, 1727–1741 (2007)

    Article  CAS  Google Scholar 

  5. L. Zai-Qun, Chem. Rev. 110, 5675–5691 (2010)

    Article  Google Scholar 

  6. J. Zheng, C. Ding, L. Wang, G. Li, J. Shi, H. Li, H. Wang, Y. Suo, Food Chem. 126, 859–865 (2011)

    Article  CAS  Google Scholar 

  7. L. Yahui, Z. Xiaobo, S. Tingting, S. Jiyong, Z. Jiewen, M. Holmes, Food Anal. Methods 10, 1034–1044 (2017)

    Article  Google Scholar 

  8. Y. Liu, W. Sun, S. Zeng, W. Huang, D. Liu, W. Hu, X. Shen, Y. Wang, Sci. Hortic. 170, 267–274 (2014)

    Article  CAS  Google Scholar 

  9. J. Pérez-Jiménez, S. Arranz, M. Tabernero, M.E. Díaz-Rubio, J. Serrano, I. Goñi, F. Saura-Calixto, Food Res. Int. 41, 274–285 (2008)

    Article  Google Scholar 

  10. Y. Zhang, B. Bao, B. Lu, Y. Ren, X. Tie, Y. Zhang, J. Chromatogr. A 1065, 177–185 (2005)

    Article  CAS  Google Scholar 

  11. Y. Zhang, X.Q. Wu, Z.Y. Yu, China J. Chin. Mater. Med. 27, 254–257 (2002)

    CAS  Google Scholar 

  12. V. Gökmen, A. Serpen, V. Fogliano, Trends Food Sci. Technol. 20, 278–288 (2009)

    Article  Google Scholar 

  13. S.E. Çelik, M. Özyürek, K. Güçlü, R. Apak, Anal. Chim. Acta 674, 79–88 (2010)

    Article  Google Scholar 

  14. H. Cen, Y. He, Trends Food Sci. Technol. 18, 72–83 (2007)

    Article  CAS  Google Scholar 

  15. L. Liu, D. Cozzolino, W. Cynkar, M. Gishen, C. Colby, J. Agric. Food Chem. 54, 6754–6759 (2006)

    Article  CAS  Google Scholar 

  16. S. Tingting, Z. Xiaobo, S. Jiyong, L. Zhihua, H. Xiaowei, X. Yiwei, C. Wu, Food Anal. Methods 9, 68–79 (2016)

    Article  Google Scholar 

  17. D. Wu, J. Chen, B. Lu, L. Xiong, Y. He, Y. Zhang, Food Chem. 135, 2147–2156 (2012)

    Article  CAS  Google Scholar 

  18. C. Lin, X. Chen, L. Jian, C. Shi, X. Jin, G. Zhang, Food Chem. 162, 10–15 (2014)

    Article  CAS  Google Scholar 

  19. T. Sun, J. Tang, J.R. Powers, J. Agric. Food Chem. 53, 42–48 (2005)

    Article  CAS  Google Scholar 

  20. M. Arslan, A. Rakha, M.R. Khan, X. Zou, J. Food Meas. Charact. 11, 1959–1968 (2017)

    Article  Google Scholar 

  21. E.N. Frankel, A.S. Meyer, J. Sci. Food Agric. 80, 1925–1941 (2000)

    Article  CAS  Google Scholar 

  22. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, Free Radic. Biol. Med. 26, 1231–1237 (1999)

    Article  CAS  Google Scholar 

  23. X. Xiong, M. Li, J. Xie, Q. Jin, B. Xue, T. Sun, Carbohydr. Polym. 92, 1166–1171 (2013)

    Article  CAS  Google Scholar 

  24. I. Kiliç, Y. Yeşiloğlu, Spectrochim Acta Part A 115, 719–724 (2013)

    Article  Google Scholar 

  25. R. Di Stefano, Annali dell’Istituto Sperimentale per l’Enologia Asti 22, 125–136 (1991)

    Google Scholar 

  26. J. Zhishen, T. Mengcheng, W. Jianming, Food Chem. 64, 555–559 (1999)

    Article  CAS  Google Scholar 

  27. I.S. Helland, T. Næs, T. Isaksson, Chemom. Intell. Lab. Syst. 29, 233–241 (1995)

    Article  CAS  Google Scholar 

  28. H.E. Tahir, Z. Xiaobo, S. Jiyong, A.A. Mariod, T. Wiliam, Food Anal. Methods 9, 1228–1236 (2016)

    Article  Google Scholar 

  29. S. Wold, M. Sjöström, L. Eriksson, Chemom. Intell. Lab. Syst. 58, 109–130 (2001)

    Article  CAS  Google Scholar 

  30. H.J. He, D.W. Sun, D. Wu, Food Res. Int. 62, 476–483 (2014)

    Article  CAS  Google Scholar 

  31. M. Kamruzzaman, G. ElMasry, D.W. Sun, P. Allen, Food Chem. 141, 389–396 (2013)

    Article  CAS  Google Scholar 

  32. L. Norgaard, A. Saudland, J. Wagner, J.P. Nielsen, L. Munck, S.B. Engelsen, Appl. Spectrosc. 54, 413–419 (2000)

    Article  CAS  Google Scholar 

  33. A.L.H. Müller, R.S. Picoloto, P.M. de Azevedo, M.F. Ferrão, R.C.L. Guimarães, E.I. Müller, E.M.M. Flores, M.D.F.P. dos Santos. Spectrochim Acta Part A 89, 82–87 (2012)

    Article  Google Scholar 

  34. E. Teye, X. Huang, Food Anal. Methods 8, 945–953 (2015)

    Article  Google Scholar 

  35. P. Wiegand, R. Pell, E. Comas, Chemom. Intell. Lab. Syst. 98, 108–114 (2009)

    Article  CAS  Google Scholar 

  36. Q. Chen, P. Jiang, J. Zhao, Spectrochim. Acta Part A 76, 50–55 (2010)

    Article  Google Scholar 

  37. B.M. Nicolai, K. Beullens, E. Bobelyn, A. Peirs, W. Saeys, K.I. Theron, J. Lammertyn, Postharvest. Biol. Technol. 46, 99–118 (2007)

    Article  Google Scholar 

  38. D.S. Ferreira, J.A.L. Pallone, R.J. Poppi, Food Res. Int. 51, 53–58 (2013)

    Article  CAS  Google Scholar 

  39. S.L. Cantor, S.W. Hoag, C.D. Ellison, M.A. Khan, R.C. Lyon, AAPS PharmSciTech. 12, 262–278 (2011)

    Article  CAS  Google Scholar 

  40. W. Ni, G. Tingting, W. Hailiang, D. Yuzhi, L. Jiayu, L. Cen, W. Lixin, B. Hongtao, J. Ethnopharmacol. 150, 529–535 (2013)

    Article  CAS  Google Scholar 

  41. S.D. Velioglu, H.T. Temiz, E. Ercioglu, H.M. Velioglu, A. Topcu, I.H. Boyaci, Food Chem. 221, 87–90 (2017)

    Article  Google Scholar 

  42. M. Friedel, C.D. Patz, H. Dietrich, Food Chem. 141, 4200–4207 (2013)

    Article  CAS  Google Scholar 

  43. M.F. Ferrão, M. de Souza Viera, R.E.P. Pazos, D. Fachini, A.E. Gerbase, L. Marder, Fuel 90, 701–706 (2011)

    Article  Google Scholar 

  44. D.J. da Silva, H. Wiebeck, Vib. Spectrosc. 92, 259–266 (2017)

    Article  Google Scholar 

  45. X. Zou, J. Zhao, Y. Li, Vib. Spectrosc. 44, 220–227 (2007)

    Article  CAS  Google Scholar 

  46. F. Marini, R. Bucci, I. Ginevro, A.L. Magrì, Chemom. Intell. Lab. Syst. 97, 52–63 (2009)

    Article  CAS  Google Scholar 

  47. T.R. Viegas, A.L. Mata, M.M. Duarte, K.M. Lima, Food Chem. 190, 1–4 (2016)

    Article  CAS  Google Scholar 

  48. B. Aliakbarian, L. Bagnasco, P. Perego, R. Leardi, M. Casale, Anal. Methods 8, 5962–5969 (2016)

    Article  Google Scholar 

  49. A. Durand, O. Devos, C. Ruckebusch, J.P. Huvenne, Anal. Chim. Acta 595, 72–79 (2007)

    Article  CAS  Google Scholar 

  50. L. Munck, J. Pram Nielsen, B. Møller, J. Susanne, L.B. Søndergaard, S. Balling, L. Nørgaard, R. Bro, Anal. Chim. Acta. 446, 169–184 (2001)

    Article  Google Scholar 

  51. F.Y. Kutsanedzie, Q. Chen, M.M. Hassan, M. Yang, H. Sun, M.H. Rahman, Food Chem. 240, 231–238 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciatively acknowledge financial support provided by the International Science and Technology Cooperation Project of Jiangsu Province (BZ2016013); The Natural Science Foundation of Jiangsu Province (BK20160506, BE2016306); China Postdoctoral Science Foundation (2016M590422, 2017M611736); The National Natural Science Foundation of China (31671844, 31601543, 31750110458) and The National Key Research and Development Program of China (2016YFD0401104). We also would like to thank our colleagues in School of Food and Biological Engineering who helped in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zou Xiaobo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arslan, M., Xiaobo, Z., Tahir, H.E. et al. Near-infrared spectroscopy coupled chemometric algorithms for prediction of antioxidant activity of black goji berries (Lycium ruthenicum Murr.). Food Measure 12, 2366–2376 (2018). https://doi.org/10.1007/s11694-018-9853-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-018-9853-x

Keywords

Navigation