Skip to main content

Advertisement

Log in

Effects of complex coacervation-spray drying and conventional spray drying on the quality of microencapsulated orange essential oil

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Orange essential oil (OEO) was microencapsulated by complex coacervation using a whey protein isolate (WPI)–arabic gum (AG) system followed by spray drying, and it was compared with the conventional spray drying microencapsulation process using N-Lok starch as wall material. Complex coacervation between WPI and AG was characterized in terms of zeta potential and coacervation efficiency. Coacervated microcapsules with different core:wall (OEO:WPI–AG) ratio (1:1–1:4) were spray dried using 160 and 90 °C as inlet and outlet temperature, respectively. Maltodextrin DE10 was added to protect integrity of coacervated microcapsules during spray drying. The highest retention and encapsulation efficiency (53 and 46% respectively) were obtained for a core:wall ratio of 1:2. The WPI:AG system with core:wall ratio of 1:2 was spray dried using 140–220 °C and 80–120 °C as inlet and outlet temperatures respectively, and the results indicated that these inlet and outlet temperatures had no significant effect on retention and encapsulation efficiency. Microencapsulation by conventional spray drying at 200–120 °C as inlet and outlet temperatures, resulted in the highest retention and encapsulation efficiencies (79 and 73% respectively), which represents 25% higher than spray dried coacervated microcapsules. After 4 months of storage, the spray dried coacervated microcapsules showed a tenfold higher carvone concentration (indicator of degradation), than the conventional microencapsulated spray dried product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Adamiec, D. Kalemba, Drying Technol. 24, 1127–1132 (2006)

    Article  CAS  Google Scholar 

  2. A. Martín, S. Varona, A. Navarrete, M.J. Cocero, J. Chem. Eng. 4, 31–41 (2010)

    Google Scholar 

  3. R.F. Matthews, R.J. Braddock, Food Technol. 1, 57–61 (1987)

    Google Scholar 

  4. R.O. Elviña, E. Mojica, J. Appl. Sci. Environ. Manag. 9, 23–27 (2005)

    Google Scholar 

  5. A. Rodríguez, J. Peris, A. Redondo, T. Shimada, L. Peña, Data Brief 9, 355–361 (2016)

    Article  Google Scholar 

  6. D. Young, C. Morr, J. Agric. Food Chem. 44, 1314–1320 (1996)

    Article  Google Scholar 

  7. J. Yang, J. Xiao, L. Ding, Eur. Food Res. Technol. 3, 467–474 (2009)

    Article  Google Scholar 

  8. B. Bhandari, Spray Drying: An Encapsulation Technique for Food Flavors. (Science Publishers, Enfield)

  9. S. Jafari, E. Assadpoor, Y. He, B. Bhandari, Drying Technol. 26, 816–835 (2008)

    Article  Google Scholar 

  10. P. Roccia, M. Martínez, J. Llabot, P. Ribotta, Adv. Powder Technol. 254, 307–313 (2014)

    Article  CAS  Google Scholar 

  11. G. Reineccius, Drying Technol. 22, 1289–1324 (2004)

    Article  Google Scholar 

  12. B. Gibbs, S. Kermasha, I. Alli, C. Mulligan, J. Food Sci. 50, 213–224 (1999)

    CAS  Google Scholar 

  13. J.P. Hecht, C.J. King, Ind. Eng. Chem. Res. 39, 1766–1774 (2000)

    Article  CAS  Google Scholar 

  14. M. Santos, F. Bozza, M. Thomazini, C. Favaro-Trindade, Food Chem. 171, 32–39 (2015)

    Article  CAS  Google Scholar 

  15. F. Weinbreck, M. Minor, G. Kruif, J. Microencapsul. 21, 667–679 (2004)

    Article  CAS  Google Scholar 

  16. C. Kruif, F. Weinbreck, R. Vries, J. Colloid Interface Sci. 9, 340–349 (2004)

    Google Scholar 

  17. C. Schmitt, S. Turgeon, J. Colloid Interface Sci. 167, 63–70 (2011)

    Article  CAS  Google Scholar 

  18. R. Thimma, S. Tammishetti, J. Microencapsul. 20, 203–210 (2003)

    Article  CAS  Google Scholar 

  19. B. Ocak, J. Environ. Manag. 100, 22–28 (2012)

    Article  CAS  Google Scholar 

  20. A. Poshadri, K. Aparna, J. Res. ANGRAU 38, 86–102 (2010)

    Google Scholar 

  21. M. Evans, I. Ratcliffe, P.A. Williams, Curr. Opin. Colloid Interface Sci. 18, 272–282 (2013)

    Article  CAS  Google Scholar 

  22. X. Yang, N. Gao, L. Hu, J. Li, Y. Sun, J. Food Eng. 161, 87–93 (2015)

    Article  CAS  Google Scholar 

  23. A. Prata, M. Zanin, M. Ré, C. Grosso, Colloids Surf. B 67, 171–178 (2008)

    Article  CAS  Google Scholar 

  24. F. Xing, G. Cheng, B. Yang, L. Ma, J. Appl. Polym. Sci. 91, 2669–2675 (2003)

    Article  Google Scholar 

  25. K. Zhang, H. Zhang, X. Hu, S. Bao, H. Huang, Colloids Surf. B 89, 61–66 (2012)

    Article  CAS  Google Scholar 

  26. X. Jun-xia, Y. Hai-yan, Y. Jian, Food Chem. 125, 1267–1272 (2011)

    Article  Google Scholar 

  27. M. Saravanan, K.P. Rao, Carbohydr. Polym. 80, 808–816 (2010)

    Article  CAS  Google Scholar 

  28. A. Prata, C. Grosso, Carbohydr. Polym. 116, 292–299 (2015)

    Article  CAS  Google Scholar 

  29. Z. Yang, Z. Peng, J. Li, S. Li, L. Kong, P. Li, Q. Wang, Food Chem. 145, 272–277 (2014)

    Article  CAS  Google Scholar 

  30. Z. Dong, S. Xia, S. Hua, K. Hayat, X. Zhang, S. Xu, Colloids Surf. B 63, 41–47 (2008)

    Article  CAS  Google Scholar 

  31. A. Gharsallaoui, G. Roudaut, O. Chambin, A. Voilley, R. Saurel, Food Res. Int. 40, 1107–1121 (2007)

    Article  CAS  Google Scholar 

  32. E. Bouyer, G. Mekhloufi, I. Le Potier, J. Colloid Interface Sci. 354, 457–477 (2011)

    Article  Google Scholar 

  33. C. Velázquez-Contreras, G. Osorio-Revilla, T. Gallardo-Velázquez, Drying Technol. 32, 41–47 (2014)

    Article  Google Scholar 

  34. AOAC, Official Methods of Analysis of the Association of Official Analytical Chemists, 17th edn. (Association of Official Analytical Chemists, Arlington, 2000)

    Google Scholar 

  35. E. Haypek, L. Silva, E. Batista, D. Marquez, M. Meireles, A. Meireles, J. Chem. Eng. 17, 4–7 (2000)

    Google Scholar 

  36. F. Weinbreck, R. Vries, P. Schrooyen, G. Kruif, Biomacromolecules 4, 293–303 (2003)

    Article  CAS  Google Scholar 

  37. S. Liu, H. Low, M. Nickerson, Oil Chem. Soc. 87, 809–815 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from Escuela Nacional de Ciencias Biológicas from Instituto Politécnico Nacional and CONACYT (Consejo Nacional de Ciencia y Tecnología) Mexico for the development of this work is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo Osorio-Revilla.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rojas-Moreno, S., Cárdenas-Bailón, F., Osorio-Revilla, G. et al. Effects of complex coacervation-spray drying and conventional spray drying on the quality of microencapsulated orange essential oil. Food Measure 12, 650–660 (2018). https://doi.org/10.1007/s11694-017-9678-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-017-9678-z

Keywords

Navigation