Effects of complex coacervation-spray drying and conventional spray drying on the quality of microencapsulated orange essential oil

  • Sandra Rojas-Moreno
  • Fernando Cárdenas-Bailón
  • Guillermo Osorio-Revilla
  • Tzayhrí Gallardo-Velázquez
  • José Proal-Nájera
Original Paper


Orange essential oil (OEO) was microencapsulated by complex coacervation using a whey protein isolate (WPI)–arabic gum (AG) system followed by spray drying, and it was compared with the conventional spray drying microencapsulation process using N-Lok starch as wall material. Complex coacervation between WPI and AG was characterized in terms of zeta potential and coacervation efficiency. Coacervated microcapsules with different core:wall (OEO:WPI–AG) ratio (1:1–1:4) were spray dried using 160 and 90 °C as inlet and outlet temperature, respectively. Maltodextrin DE10 was added to protect integrity of coacervated microcapsules during spray drying. The highest retention and encapsulation efficiency (53 and 46% respectively) were obtained for a core:wall ratio of 1:2. The WPI:AG system with core:wall ratio of 1:2 was spray dried using 140–220 °C and 80–120 °C as inlet and outlet temperatures respectively, and the results indicated that these inlet and outlet temperatures had no significant effect on retention and encapsulation efficiency. Microencapsulation by conventional spray drying at 200–120 °C as inlet and outlet temperatures, resulted in the highest retention and encapsulation efficiencies (79 and 73% respectively), which represents 25% higher than spray dried coacervated microcapsules. After 4 months of storage, the spray dried coacervated microcapsules showed a tenfold higher carvone concentration (indicator of degradation), than the conventional microencapsulated spray dried product.


Complex coacervation Spray drying Microencapsulation Whey protein isolate Arabic gum 



Financial support from Escuela Nacional de Ciencias Biológicas from Instituto Politécnico Nacional and CONACYT (Consejo Nacional de Ciencia y Tecnología) Mexico for the development of this work is highly appreciated.

Compliance with ethical standards

Conflict of interest

The authors report no conflict of interest.


  1. 1.
    J. Adamiec, D. Kalemba, Drying Technol. 24, 1127–1132 (2006)CrossRefGoogle Scholar
  2. 2.
    A. Martín, S. Varona, A. Navarrete, M.J. Cocero, J. Chem. Eng. 4, 31–41 (2010)Google Scholar
  3. 3.
    R.F. Matthews, R.J. Braddock, Food Technol. 1, 57–61 (1987)Google Scholar
  4. 4.
    R.O. Elviña, E. Mojica, J. Appl. Sci. Environ. Manag. 9, 23–27 (2005)Google Scholar
  5. 5.
    A. Rodríguez, J. Peris, A. Redondo, T. Shimada, L. Peña, Data Brief 9, 355–361 (2016)CrossRefGoogle Scholar
  6. 6.
    D. Young, C. Morr, J. Agric. Food Chem. 44, 1314–1320 (1996)CrossRefGoogle Scholar
  7. 7.
    J. Yang, J. Xiao, L. Ding, Eur. Food Res. Technol. 3, 467–474 (2009)CrossRefGoogle Scholar
  8. 8.
    B. Bhandari, Spray Drying: An Encapsulation Technique for Food Flavors. (Science Publishers, Enfield)Google Scholar
  9. 9.
    S. Jafari, E. Assadpoor, Y. He, B. Bhandari, Drying Technol. 26, 816–835 (2008)CrossRefGoogle Scholar
  10. 10.
    P. Roccia, M. Martínez, J. Llabot, P. Ribotta, Adv. Powder Technol. 254, 307–313 (2014)CrossRefGoogle Scholar
  11. 11.
    G. Reineccius, Drying Technol. 22, 1289–1324 (2004)CrossRefGoogle Scholar
  12. 12.
    B. Gibbs, S. Kermasha, I. Alli, C. Mulligan, J. Food Sci. 50, 213–224 (1999)Google Scholar
  13. 13.
    J.P. Hecht, C.J. King, Ind. Eng. Chem. Res. 39, 1766–1774 (2000)CrossRefGoogle Scholar
  14. 14.
    M. Santos, F. Bozza, M. Thomazini, C. Favaro-Trindade, Food Chem. 171, 32–39 (2015)CrossRefGoogle Scholar
  15. 15.
    F. Weinbreck, M. Minor, G. Kruif, J. Microencapsul. 21, 667–679 (2004)CrossRefGoogle Scholar
  16. 16.
    C. Kruif, F. Weinbreck, R. Vries, J. Colloid Interface Sci. 9, 340–349 (2004)Google Scholar
  17. 17.
    C. Schmitt, S. Turgeon, J. Colloid Interface Sci. 167, 63–70 (2011)CrossRefGoogle Scholar
  18. 18.
    R. Thimma, S. Tammishetti, J. Microencapsul. 20, 203–210 (2003)CrossRefGoogle Scholar
  19. 19.
    B. Ocak, J. Environ. Manag. 100, 22–28 (2012)CrossRefGoogle Scholar
  20. 20.
    A. Poshadri, K. Aparna, J. Res. ANGRAU 38, 86–102 (2010)Google Scholar
  21. 21.
    M. Evans, I. Ratcliffe, P.A. Williams, Curr. Opin. Colloid Interface Sci. 18, 272–282 (2013)CrossRefGoogle Scholar
  22. 22.
    X. Yang, N. Gao, L. Hu, J. Li, Y. Sun, J. Food Eng. 161, 87–93 (2015)CrossRefGoogle Scholar
  23. 23.
    A. Prata, M. Zanin, M. Ré, C. Grosso, Colloids Surf. B 67, 171–178 (2008)CrossRefGoogle Scholar
  24. 24.
    F. Xing, G. Cheng, B. Yang, L. Ma, J. Appl. Polym. Sci. 91, 2669–2675 (2003)CrossRefGoogle Scholar
  25. 25.
    K. Zhang, H. Zhang, X. Hu, S. Bao, H. Huang, Colloids Surf. B 89, 61–66 (2012)CrossRefGoogle Scholar
  26. 26.
    X. Jun-xia, Y. Hai-yan, Y. Jian, Food Chem. 125, 1267–1272 (2011)CrossRefGoogle Scholar
  27. 27.
    M. Saravanan, K.P. Rao, Carbohydr. Polym. 80, 808–816 (2010)CrossRefGoogle Scholar
  28. 28.
    A. Prata, C. Grosso, Carbohydr. Polym. 116, 292–299 (2015)CrossRefGoogle Scholar
  29. 29.
    Z. Yang, Z. Peng, J. Li, S. Li, L. Kong, P. Li, Q. Wang, Food Chem. 145, 272–277 (2014)CrossRefGoogle Scholar
  30. 30.
    Z. Dong, S. Xia, S. Hua, K. Hayat, X. Zhang, S. Xu, Colloids Surf. B 63, 41–47 (2008)CrossRefGoogle Scholar
  31. 31.
    A. Gharsallaoui, G. Roudaut, O. Chambin, A. Voilley, R. Saurel, Food Res. Int. 40, 1107–1121 (2007)CrossRefGoogle Scholar
  32. 32.
    E. Bouyer, G. Mekhloufi, I. Le Potier, J. Colloid Interface Sci. 354, 457–477 (2011)CrossRefGoogle Scholar
  33. 33.
    C. Velázquez-Contreras, G. Osorio-Revilla, T. Gallardo-Velázquez, Drying Technol. 32, 41–47 (2014)CrossRefGoogle Scholar
  34. 34.
    AOAC, Official Methods of Analysis of the Association of Official Analytical Chemists, 17th edn. (Association of Official Analytical Chemists, Arlington, 2000)Google Scholar
  35. 35.
    E. Haypek, L. Silva, E. Batista, D. Marquez, M. Meireles, A. Meireles, J. Chem. Eng. 17, 4–7 (2000)Google Scholar
  36. 36.
    F. Weinbreck, R. Vries, P. Schrooyen, G. Kruif, Biomacromolecules 4, 293–303 (2003)CrossRefGoogle Scholar
  37. 37.
    S. Liu, H. Low, M. Nickerson, Oil Chem. Soc. 87, 809–815 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Departamento de Ingeniería BioquímicaEscuela Nacional de Ciencias Biológicas Instituto Politécnico NacionalMexico CityMexico
  2. 2.Departamento de BiofísicaEscuela Nacional de Ciencias Biológicas Instituto Politécnico NacionalMexico CityMexico
  3. 3.Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Instituto Politécnico NacionalDurangoMexico

Personalised recommendations