Preparation, characterization and evaluation of physicochemical properties of phycocyanin-loaded solid lipid nanoparticles and nanostructured lipid carriers

  • Amin Seyed Yagoubi
  • Fakhri Shahidi
  • Mohebbat Mohebbi
  • Mehdi Varidi
  • Shiva Golmohammadzadeh
Original Paper


The aim of this study was to prepare, characterize and evaluate solid lipid nanoparticles and nanostructured lipid carriers containing phycocyanin from Spirulina platensis. These nanocarriers were prepared through ultrasound-assisted high-shear homogenization method. The results showed that the type and amount of lipid and surfactant had a significant effect on the particle size distribution, polydispersity index and zeta potential. The results of differential scanning calorimetry, fourier transorm infrared spectroscopy and X-ray diffraction analyses indicated no phycocyanin peak in the prepared formulations, showing the effectiveness of nanocarriers systems in phycocyanin encapsulation. The results of the investigations on particles morphology showed that the produced nanoparticles were spherical and uniform and their size ranged from 50 to 80 nm. The nanoparticle encapsulation efficiency varied from 37 to 69%.


Solid lipid nanoparticles Nanostructured lipid carriers Phycocyanin Spirulina platensis 


  1. 1.
    L. Day, R.B. Seymour, K.F. Pitts, I. Konczak, L. Lundin, Trends Food Sci. Technol. 20, 388–395 (2009)CrossRefGoogle Scholar
  2. 2.
    F. Shahidi, Trends Food Sci. Technol. 20, 376–387 (2009)CrossRefGoogle Scholar
  3. 3.
    H.L. Wong, R.H. Bendayan, A.M. Rauth, Adv. Drug Deliv. Rev. 59, 491–504 (2007)CrossRefGoogle Scholar
  4. 4.
    R.J. Marles, M.L. Barrett, J. Barnes, M.L. Chavez, P. Gardiner, R. Ko, G.B. Mahady, T.L. Dog, N.D. Sarma, G.L. Giancaspro, M. Sharaf, J. Griffiths, Crit. Rev. Food Sci. 51, 593–604 (2011)CrossRefGoogle Scholar
  5. 5.
    S.T. Silveira, J.F.M. Burkert, J.A.V. Costa, C.A.V. Burkert, S.J. Kalil, Bioresour. Technol. 98, 1629–1634 (2007)CrossRefGoogle Scholar
  6. 6.
    C. Jimenez, B.R. Cossıo, D. Labella, F.X. Niell, Aquaculture 217, 179–190 (2003)CrossRefGoogle Scholar
  7. 7.
    T. Hirata, M. Tanaka, M. Ooike, J. Appl. Phycol. 12, 435–439 (2000)CrossRefGoogle Scholar
  8. 8.
    H. Beheshtipour, A.M. Mortazavian, R. Mohammadi, S. Sohrabvandi, K. Khosravi-Darani, Compr. Rev. Food. Sci. Food. Saf. 12, 144–154 (2013)CrossRefGoogle Scholar
  9. 9.
    Y. Ou, L. lin, Q. Pan, X. Yang, X. Cheng, Environ. Toxicol. Pharmacol. 34, 721–726 (2012)CrossRefGoogle Scholar
  10. 10.
    M.C. Reddy, J. Subhashini, S.V. Mahipal, V.B. Bhat, R.P. Srinivas, G. Kiranmai, K.M. Madyastha, P. Reddanna, Biochem. Biophys. Res. Commun. 304, 385–392 (2003)CrossRefGoogle Scholar
  11. 11.
    E. Small, Biodiversity 12, 255–265 (2011)CrossRefGoogle Scholar
  12. 12.
    R. Chaiklahan, N. Chirasuwan, V. Loha, Bioresour. Technol. 102, 7159–7164 (2011)CrossRefGoogle Scholar
  13. 13.
    R. Chaiklahan, N. Chirasuwana, B. Bunnaga, Process Biochem. 47, 659–664 (2012)CrossRefGoogle Scholar
  14. 14.
    Q. Huang, H. Yu, Q. Ru., J. Food Sci. 75, 50–57 (2010)CrossRefGoogle Scholar
  15. 15.
    Y.C. Seo, W.S. Choi, J.H. Park, J.O. Park, K.H. Jung, H.Y. Lee, Int. J. Mol. Sci. 14, 1778–1787 (2013)CrossRefGoogle Scholar
  16. 16.
    M. Fathi, J. Varshosaz, M. Mohebbi, F. Shahidi, Food Bioprocess Technol. 6, 1464–1475 (2013)CrossRefGoogle Scholar
  17. 17.
    S.A. Wissing, R.H. Muller, Int. J. Pharm. 242, 377–379 (2002)CrossRefGoogle Scholar
  18. 18.
    K. Jores, W. Mehnert, M. Drechsler, H. Bunjes, C. Johann, K. Mader, J. Control. Release 95, 217–227 (2004)CrossRefGoogle Scholar
  19. 19.
    D.M. Luykx, R.J. Peters, S.M. Van Ruth, H. Bouwmeester, J. Agric. Food. Chem. 56, 8231–8247 (2008)CrossRefGoogle Scholar
  20. 20.
    K. Vivek, R. Harivarhan, S.R.M. Ramachandra, AAPSPharmSciTech 8, 16–24 (2007)Google Scholar
  21. 21.
    A. Hejri, A. Khosravi, K. Gharanjigh, M. Hejazi, Food Chem. 141, 117–123 (2013)CrossRefGoogle Scholar
  22. 22.
    A. Patel, S. Mishra, R. Pawar, P.K. Ghosh, Protein Expr. Purif. 40, 248–255 (2005)CrossRefGoogle Scholar
  23. 23.
    P. Prabakaran, A.D. Ravindran, Int. J. Res. Pharm. Life Sci. 1, 15–20 (2013)Google Scholar
  24. 24.
    J. Coates, in Encyclopedia of Analytical Chemistry. ed. by R.A. Meyers. Interpretation of Infrared Spectra; A Practical Approach. (Wiley, Chichester, 2000), pp. 10815–10837Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Amin Seyed Yagoubi
    • 1
  • Fakhri Shahidi
    • 1
  • Mohebbat Mohebbi
    • 1
  • Mehdi Varidi
    • 1
  • Shiva Golmohammadzadeh
    • 2
  1. 1.Department of Food Science and TechnologyFerdowsi University of MashhadMashhadIran
  2. 2.Nanotechnology Research Center, School of PharmacyMashhad University of Medical SciencesMashhadIran

Personalised recommendations