Skip to main content

Advertisement

Log in

Optimization and analysis of microwave-assisted extraction of bioactive compounds from Mimosa pudica L. using RSM & ANFIS modeling

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The central composite rotatable design (CCRD) based response surface methodology (RSM) and adaptive neuro-fuzzy inference system (ANFIS) statistical methodology was used to design and identify highly efficient extraction process parameters to get high yield of bioactive compound from Mimosa pudica L. In general, many of the process parameters are need to be effectively involved to maximize the yield of bioactive compounds. In this relation, the independent process parameters such as methanol concentration (X 1), microwave power (X 2), irradiation temperature (X 3) and irradiation time (X 4) was chosen in the process of microwave assisted extraction (MAE). The observed studied parametes were produced effective results in the range of 60–85% methanol concentration, 15–25% microwave power, 40–60 °C irradiation temperature and irradiation time 10–15 min. Moreover the optimal yields of TPC and TFC are 635–640 mg gallic acid equivalents (GAE)/g and 61.53–61.76 mg rutin equivalents (RU)/g of extract, and their antioxidant activities are 68.7–72.6% DPPHsc, 76.1–76.86% ABTSsc and FRAB value of 65.24–66.94 µg mol (Fe (II))/g could be obtained for specific optimized process variables. Further, the bioactive compound mimopudine was identified through high performance liquid chromatography (HPLC) in the obtained extract.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y.-Z. Fang, S. Yang, G. Wu, Free radicals, antioxidants, and nutrition. Nutrition 18(10), 872–879 (2002)

    Article  CAS  Google Scholar 

  2. I. Fridovich, Fundamental aspects of reactive oxygen species, or what’s the matter with oxygen? Ann. N. Y. Acad. Sci. 893(1), 13–18 (1999)

    Article  CAS  Google Scholar 

  3. M.A. Babizhayev, Generation of reactive oxygen species in the anterior eye segment. Synergistic codrugs of N-acetylcarnosine lubricant eye drops and mitochondria-targeted antioxidant act as a powerful therapeutic platform for the treatment of cataracts and primary open-angle glaucoma. BBA Clin. 6, 49–68 (2016)

    Article  Google Scholar 

  4. M. Giorgio, M. Trinei, E. Migliaccio, P.G. Pelicci, Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals? Nat. Rev. Mol. Cell Biol. 8(9), 722–728 (2007)

    Article  CAS  Google Scholar 

  5. B. Poljsak, D. Šuput, I. Milisav, (2013). Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants. Oxidative medicine and cellular longevity 2013

  6. E. Birben, U.M. Sahiner, C. Sackesen, S. Erzurum, O. Kalayci, Oxidative stress and antioxidant defense. World Allergy Organ. J. 5(1), 9 (2012)

    Article  CAS  Google Scholar 

  7. A. Harborne, (1998). Phytochemical methods a guide to modern techniques of plant analysis. Springer, Berlin

    Google Scholar 

  8. K. Selvaraj, R. Chowdhury, C. Bhattacharjee, Optimization of the solvent extraction of bioactive polyphenolic compounds from aquatic fern Azolla microphylla using response surface methodology. Int. Food Res. J. 21(4), (2014)

  9. H. Wildenradt, V. Singleton, The production of aldehydes as a result of oxidation of polyphenolic compounds and its relation to wine aging. Am. J. Enol. Viticult. 25(2), 119–126 (1974)

    CAS  Google Scholar 

  10. T. Amalraj, S. Ignacimuthu, Hyperglycemic effect of leaves of Mimosa pudica Linn. Fitoterapia 73(4), 351–352 (2002)

    Article  CAS  Google Scholar 

  11. J. Berhaut, Flore illustree du Senegal. Dicotyledones: tome 3. Connaracees a Euphorbiacees. Dakar: Gouvernement du Senegal, Ministere du Developpement Rural et de l’Hydraulique, Direction des Eaux et Forets 634p. Illus. Euphorbiaceae, 354–607 (1975)

  12. E.N. Bum, D. Dawack, M. Schmutz, A. Rakotonirina, S. Rakotonirina, C. Portet, A. Jeker, H.-R. Olpe, P. Herrling, Anticonvulsant activity of Mimosa pudica decoction. Fitoterapia 75(3), 309–314 (2004)

    Google Scholar 

  13. T. Nazeema, V. Brindha, Antihepatotoxic and antioxidant defense potential of Mimosa pudica. Int. J. Drug Discov. 1, 1–4 (2009)

    Google Scholar 

  14. S. Arokiyaraj, N. Sripriya, R. Bhagya, B. Radhika, L. Prameela, N. Udayaprakash, Phytochemical screening, antibacterial and free radical scavenging effects of Artemisia nilagirica, Mimosa pudica and Clerodendrum siphonanthus —an in-vitro study. Asian Pac. J. Trop. Biomed. 2(2), S601–S604 (2012)

    Article  Google Scholar 

  15. G. Joana Gil-Chávez, J.A. Villa, J. Fernando Ayala-Zavala, J. Basilio Heredia, D. Sepulveda, E.M. Yahia, G.A. González-Aguilar, Technologies for extraction and production of bioactive compounds to be used as nutraceuticals and food ingredients: an overview. Compr. Rev. Food Sci. Food Saf. 12(1), 5–23 (2013)

    Article  Google Scholar 

  16. D. Capitani, A.P. Sobolev, M. Delfini, S. Vista, R. Antiochia, N. Proietti, S. Bubici, G. Ferrante, S. Carradori, F.R.D. Salvador, (2014). NMR methodologies in the analysis of blueberries. Electrophoresis 35(11), 1615–1626

    Article  CAS  Google Scholar 

  17. G.J. Swamy, K. Muthukumarappan, Optimization of continuous and intermittent microwave extraction of pectin from banana peels. Food. Chem. 220, 108–114 (2017)

    Article  CAS  Google Scholar 

  18. M. Kratchanova, E. Pavlova, I. Panchev, The effect of microwave heating of fresh orange peels on the fruit tissue and quality of extracted pectin. Carbohydr. Polym. 56(2), 181–185 (2004)

    Article  CAS  Google Scholar 

  19. S. Wang, F. Chen, J. Wu, Z. Wang, X. Liao, X. Hu, Optimization of pectin extraction assisted by microwave from apple pomace using response surface methodology. J. Food Eng. 78(2), 693–700 (2007)

    Article  CAS  Google Scholar 

  20. M.L. Fishman, H.K. Chau, P.D. Hoagland, A.T. Hotchkiss, Microwave-assisted extraction of lime pectin. Food Hydrocoll 20(8), 1170–1177 (2006)

    Article  CAS  Google Scholar 

  21. M.A. Bezerra, R.E. Santelli, E.P. Oliveira, L.S. Villar, L.A. Escaleira, Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76(5), 965–977 (2008)

    Article  CAS  Google Scholar 

  22. G. Zhang, L. He, M. Hu, Optimized ultrasonic-assisted extraction of flavonoids from Prunella vulgaris L. and evaluation of antioxidant activities in vitro. Innov. Food Sci. Emerg. Technol. 12(1), 18–25 (2011)

    Article  Google Scholar 

  23. H.H. Wijngaard, N. Brunton, The optimisation of solid–liquid extraction of antioxidants from apple pomace by response surface methodology. J. Food Eng. 96(1), 134–140 (2010)

    Article  CAS  Google Scholar 

  24. L. Eriksson, E. Johansson, N. Kettaneh-Wold, C. Wikström, S. Wold, (2000). Design of Experiments. Principles and Applications, pp. 172–174

  25. C.-Y. Gan, A.A. Latiff, (2011). Optimisation of the solvent extraction of bioactive compounds from Parkia speciosa pod using response surface methodology. Food Chem. 124(3), 1277–1283

    Article  CAS  Google Scholar 

  26. K. Yang, B.S. El-Haik, (2003). Design for Six Sigma. McGraw-Hill, New York

    Google Scholar 

  27. I. Langhans, (2000). Designs for Response Surface Modelling-Quantifying the Relation Between Factors and Responses. CRC Press, Boca Raton

    Google Scholar 

  28. M. Auta, B. Hameed, Optimized waste tea activated carbon for adsorption of Methylene Blue and Acid Blue 29 dyes using response surface methodology. Chem. Eng. J. 175, 233–243 (2011)

    Article  CAS  Google Scholar 

  29. R.F. Gunst, (1996). Response Surface Methodology: Process and Product Optimization Using Designed Experiments. Taylor & Francis, Milton Park

    Google Scholar 

  30. K.N. Prasad, F.A. Hassan, B. Yang, K.W. Kong, R.N. Ramanan, A. Azlan, A. Ismail, Response surface optimisation for the extraction of phenolic compounds and antioxidant capacities of underutilised Mangifera pajang Kosterm. peels. Food. Chem. 128(4), 1121–1127 (2011)

    Article  CAS  Google Scholar 

  31. A. Subasi, Application of adaptive neuro-fuzzy inference system for epileptic seizure detection using wavelet feature extraction. Comput. Biol. Med. 37(2), 227–244 (2007)

    Article  Google Scholar 

  32. V. Singleton, J.A. Rossi, Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticult. 16(3), 144–158 (1965)

    CAS  Google Scholar 

  33. P. Siddhuraju, K. Becker, Antioxidant properties of various solvent extracts of total phenolic constituents from three different agroclimatic origins of drumstick tree (Moringa oleifera Lam.) leaves. J. Agric. Food. Chem. 51(8), 2144–2155 (2003)

    Article  CAS  Google Scholar 

  34. W. Brand-Williams, M.-E. Cuvelier, C. Berset, Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 28(1), 25–30 (1995)

    Article  CAS  Google Scholar 

  35. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26(9), 1231–1237 (1999)

    Article  CAS  Google Scholar 

  36. I.F. Benzie, J. Strain, The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the FRAP assay. Anal. Biochem. 239(1), 70–76 (1996)

    Article  CAS  Google Scholar 

  37. R. Pulido, L. Bravo, F. Saura-Calixto, Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agric. Food. Chem. 48(8), 3396–3402 (2000)

    Article  CAS  Google Scholar 

  38. A. Atkinson, A. Donev, R. Tobias, (2007). Optimum Experimental Designs, with SAS. Oxford University Press, Oxford

    Google Scholar 

Download references

Acknowledgements

We gratefully thank the Chancellor, Vice-chancellor and Directors of Kalasalingam University, Krishnankoil, India for research fellowships and utilizing research facilities. We thank Prof. Z. Maciej Gliwicz, Ms. Ewa Babkiwics, Dr. Piotr Maszczyk, Department of Hydrobiology, Faculty of Biology, University of Warsaw, Warszawa, Poland, for their prompt support and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selvaraj Kunjiappan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganesan, V., Gurumani, V., Kunjiappan, S. et al. Optimization and analysis of microwave-assisted extraction of bioactive compounds from Mimosa pudica L. using RSM & ANFIS modeling. Food Measure 12, 228–242 (2018). https://doi.org/10.1007/s11694-017-9634-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-017-9634-y

Keywords

Navigation